[1] McVenes R, Stokes K. Implantable cardiac electrostimulation devices[M]//Zhou D, Greenbaum E. Implantable Neural Prostheses 1, Devices and Applications. New York: Springer, c2009: 221-251.[2] Moffitt M, Lee D, Bradley K. Spinal cord stimulation: engineering approaches to clinical and physiological challenges[M]// Zhou D, Greenbaum E. Implantable Neural Prostheses 1, Devices and Applications. New York: Springer, c2009: 155-194.[3] Han M, McCreery D. Microelectrode technologies for deep brain stimulation[M]//Zhou D, Greenbaum E. Implantable Neural Prostheses 1, Devices and Applications. New York: Springer, c2009: 195-515.[4] Zeng F, Rebscher S, Harrison W, et al. Cochlear implants[M]//Zhou D, Greenbaum E. Implantable Neural Prostheses 1, Devices and Applications. New York: Springer, c2009: 85-116.[5] Zhou D, Greenberg R. Microelectronic visual prostheses[M]//Zhou D, Greenbaum E. Implantable Neural Prostheses 1, Devices and Applications. New York: Springer, c2009: 1-42.[6] Schulman J. Brain control and sensing of artificial limbs[M]//Zhou D, Greenbaum E. Implantable Neural Prostheses 1, Devices and Applications. New York: Springer, c2009: 275-291.[7] Lim H, Lenarz M, Lenarz T. A new auditory prosthesis using deep brain stimulation: development and implementation[M]//Zhou D, Greenbaum E. Implantable Neural Prostheses 1, Devices and Applications. New York: Springer, c2009: 117-154.[8] Rebscher S, Hetherington A, Bonham B, et al. Considerations for design of future cochlear implant electrode arrays: electrode array stiffness, size, and depth of insertion[J]. J Rehabil Res Dev, 2008, 45(5):731-47.[9] Sui X, Li L, Chai X, et al. Visual prosthesis for optic nerve stimulation[M]//Zhou D, Greenbaum E. Implantable Neural Prostheses 1, Devices and Applications. New York: Springer, c2009: 43-84.[10] Normann R, Maynard E, Rousche P, et al. A neural interface for a cortical vision prosthesis[J]. Vision Research, 1999, 39: 2577–2587.[11] McCreery D. Tissue reaction to electrodes: The problem of safe and effective stimulation of neural tissue[M]// K Horch, Dhillon (eds). Neuroprosthetics Theory and Practice. World Scientific, 2004: 592-611.[12] Merrill D. The electrochemistry of charge injection at the electrode/tissue interface[M]//Zhou D, Greenbaum E. Implantable Neural Prostheses 2, Techniques and Engineering Approaches. New York: Springer, c2010: 85-138.[13] Shah S, Hines A, Zhou D, et al. Electrical properties of retinal-electrode interface. J Neural Eng, 2007, 4(1): S24-29.[14] Hung A, Goldberg I, Judy J. Stimulation electrode materials and electrochemical testing methods[M]//Zhou D, Greenbaum E. Implantable Neural Prostheses 2, Techniques and Engineering Approaches. New York: Springer, c2010: 191-216.[15] Bard A, Faulkner L. Electrochemical methods, Chapter 7[M]. New York: Wiley, 1980.[16] Zhou D, Cui X, Hines A, et al. Conducting polymers in neural stimulation applications[M]//Zhou D, Greenbaum E. Implantable Neural Prostheses 2, Techniques and Engineering Approaches. New York: Springer, c2010: 217-252.[17] Robblee L, Rose T. Electrochemical guidelines for selection of protocols and electrode materials for neural stimulation[M]//Agnew W, McCreery D (eds). Neural Prostheses fundamental studies. NJ: Prentice Hall, 1990: 26–66.[18] Zhou D. Platinum electrode and method for manufacturing the same[P]. US Patent 6,974,533, Dec., 2005.[19] Cogan S. Neural stimulation and recording electrodes[J]. Annu Rev Biomed Eng, 2008, 10: 14.1–14.35.[20] Zhou D, Greenberg R. Tantalum capacitive microelectrode array for neural prosthesis[M]//Butler M, et al (eds). Chemical and biological sensors and analytical methods II. The Electrochemical Society, 2001: 622–629.[21] Norlin A, Pan J, Leygrafa C. Investigation of electrochemical behavior of stimulation/sensing materials for pacemaker electrode applications I. Pt, Ti, and TiN coated electrodes[J]. J Electrochem Soc, 2005, 152: J7–J15.[22] Kim E, Seo J, Woo S, et al. Fabrication of pillar shaped electrode arrays for artificial retinal implants[J]. Sensors, 2008, 8:5845–5856.[23] Cheung K. Thin-film microelectrode arrays for biomedical applications[M]//Zhou D, Greenbaum E. Implantable Neural Prostheses 2, Techniques and Engineering Approaches. New York: Springer, c2010: 157-190.[24] Hu Z, Zhou D, Greenberg R, et al. Nanopowder molding method for creating implantable high-aspect-ratio electrodes on thin flexible substrates[J]. Biomaterials, 2006, 27: 2009–2017.[25] Zhou D, Greenberg R. Microsensors and microbiosensors for retinal implants[J]. Front Biosci, 2005, 10: 166–179.[26] Hudak E, Mortimer J, Martin H. Platinum for neural stimulation: voltammetry considerations[J]. J Neural Eng, 2010, 7: 026005.[27] Stokes K. The biocompatibility and biostability of new cardiovascular materials and devices[M]//Zhou D, Greenbaum E. Implantable Neural Prostheses 2, Techniques and Engineering Approaches. New York: Springer, c2010: 1-26.[28] Zhou D, Chu A, Agazaryan A, et al. Platinum micro-electrode corrosion under neuro-stimulation conditions[C]// Proc. of 207th Electrochemical Society Meeting. Quebec City, Canada, May 15-20, 2005: 275.[29] Hung A, D Zhou, R Greenberg et al. Pulse-clamp technique for characterizing neural-stimulating electrodes[J]. J Electrochem Soc, 154, 2007: C479-C486.[30] Zhou D, Hines A, Little J, et al. Process for cathodic protection of electrode materials[P]. US Patent 7,691,252, April, 2010.[31] Cui X, Zhou D. Poly (3,4-ethylenedioxythiophene) for chronic neural stimulation[J]. IEEE Trans Neural Syst Rehabil Eng, 2007, 15: 502–508.[32] Luo X, Weaver C, Zhou D et al. Highly stable carbon nanotube doped poly(3,4-ethylenedioxythiophene) for chronic neural stimulation[J]. Biomaterials, 2011, 32(24): 5551-7.[33] Berman E, Retina. Biochemistry of the eye[M]. NY: Plenum Press, 1991: 309-315.[34] Chow A, Pardue M, Perlman J, et al. Subretinal implantation of semiconductor-based photodiodes: durability of novel implant designs[J]. J Rehabil Res, 2002, 39: 313-321.[35] Frost M, Meyerhoff M. Implantable chemical sensors for real-time clinical monitoring: progress and challenges[J]. Curr Opin Chem Biol, 2002, 6: 633-41.[36] Huang C, Carter P, Shepherd R. Stimulus induced pH changes in cochlear implants: an in vitro and in vivo study[J]. Ann Biomed Eng, 2001, 29: 791–802.[37] Zhou D. Microelectrodes for in-vivo determination of pH[M]//Electrochemical Sensors, Biosensors and Their Biomedical Applications. Elsevier, 2007: 261-305. |