[1] Watkins J J, Chen J, White H S, et al. Zeptomole voltammetric detection and electron-transfer rate measurements using platinum electrodes of nanometer dimensions[J]. Analytical Chemistry, 2003, 75(16): 3962-3971.[2] Sun P, Mirkin M V. Kinetics of electron-transfer reactions at nanoelectrodes[J]. Analytical Chemistry, 2006, 78(18): 6526-6534.[3] Wightman R M. Probing cellular chemistry in biological systems with microelectrodes[J]. Science, 2006, 311(5767): 1570-1574.[4] Sun P, Laforge F O, Abeyweera T P, et al. Nanoelectrochemistry of mammalian cells[J]. Proceedings of National Academy Sciences of the United States of America, 2008, 105(2): 443-448.[5] Morris R B, Franta D J, White H S. Electrochemistry at platinum bane electrodes of width approaching molecular dimensions: Breakdown of transport equations at very small electrodes[J]. The Journal of Physical Chemistry, 1987, 91(13): 3559-3564.[6] Smith C P, White H S. Theory of the voltammetric response of electrodes of submicron dimensions. Violation of electroneutrality in the presence of excess supporting electrolyte[J]. Analytical Chemistry, 1993, 65(23): 3343-3353.[7] Sun Y, Liu Y, Liang Z, et al. On the applicability of conventional voltammetric theory to nanoscale electrochemical interfaces[J]. The Journal of Physical Chemistry C, 2009, 113(22): 9878-9883.[8] Liu Y, He R, Zhang Q, et al. Theory of electrochemistry for nanometer-sized disk electrodes[J]. The Journal of Physical Chemistry C, 2010, 114(24): 10812-10822.[9] Agyekum I, Nimley C, Yang C X, et al. Combination of scanning electron microscopy in the characterization of a nanometer-sized electrode and current fluctuation observed at a nanometer-sized electrode[J]. The Journal of Physical Chemistry C, 2010, 114(35): 14970-14974.[10] Zhan D P, Velmurugan J, Mirkin M V. Adsorption/desorption of hydrogen on Pt nanoelectrodes: Evidence of surface diffusion and spillover[J]. Journal of the American Chemical Society, 2009, 131(41): 14756-14760.[11] Su B F, Wang W, Zhan D P, et al. Surface diffusion of adsorptive species on gold nanoelectrode[J]. Electrochemistry, 2011, 17(3): 300-305.[12] Li Y, Cox J T, Zhang B. Electrochemical responses and electrocatalysis at single Au nanoparticles[J]. Journal of the American Chemical Society. 2010, 132(9): 3047-3054.[13] Guo J, Ho C N, Sun P. Electrochemical studies of chemically modified nanometer-sized electrodes[J]. Electroanalysis, 2011, 23(2): 481-486.[14] Itaya K, Uchida I, Neff V D. Electrochemistry of polynuclear transition metal cyanides: Prussian blue and its analogues[J]. Accounts Chemical Research, 1986, 19 (1):162-168.[15] Benari M D, Hefter G T. Electrochemical characteristics of the iron(III)/iron(II) system in dimethylsulfoxide solutions[J]. Electrochimica Acta, 1991, 36(3/4): 471-477.[16] Imanishi N, Morikawa T, Kondo J, et al. Lithium intercalation behavior into iron cyanide complex as positiveelectrode of lithium secondary battery[J]. Journal of Power Sources, 1999, 79 (2): 215-219.[17] Eftekhari A. Potassium secondary cell based on Prussian blue cathode[J]. Journal of Power Sources, 2004, 126(1/2): 221-228.[18] de Tacconi N R, Rajeshwar K. Metal hexacyanoferrates: Electrosynthesis, in situ characterization, and applications[J]. Chemistry of Materials, 2003, 15(16): 3046-3062.[19] Wu, X, Cao M, Hu C, et al. Sonochemical synthesis of Prussian blue nanocubes from a single-source precursor[J]. Crystal Growth Design, 2006, 6(1): 26-28..[20] Zheng X J, Kuang Q, Xu T, et al. Growth of Prussian blue microcubes under a hydrothermal condition: Possible nonclassical crystallization by a mesoscale self-assembly[J]. The Journal of Physical Chemistry C, 2007, 111(12): 4499-4502.[21] Yang D Z, Han L H, Yang Y, et al. Solid-state redox solutions: Microfabrication and electrochemistry[J]. Angewandte Chemie-International Edition, 2011, 50(37): 8679-8682.[22] Cha C S (查全性). Introduction to kinetics of electrode processes[M]. 3rd edition. Beijing: Science Press, 2002. |