[1] Zhang J L, Vukmirovic MB, Xu Y, et al. Controlling the catalytic activity of platinum monolayer electrocatalysts for oxygen reduction with different substrates [J]. Angewandte Chemisry International Edition, 2005, 44(14): 2132-2135.[2] Adzic R R, Zhang J, Sasaki K, et al. Platinum monolayer fuel cell electrocatalysts [J]. Topics in Catalysis, 2007, 46(3/4): 249-262.[3] Zhou W P, Yang X, Vukmirovic M B, et al. Improving electrocatalysts for O2 reduction by fine-tuning the Pt-support interaction: Pt monolayer on the surfaces of a Pd3Fe(111) single-crystal alloy [J]. Journal of the American Chemical Society, 2009, 131(35): 12755-12762.[4] Stamenkovic V R, Mun B S, Mayrhofer K J J, et al. Effect of surface composition on electronic structure, stability and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces [J]. Journal of the American Chemical Society, 2006, 128(27): 8813-8819.[5] Stamenkovic V R, Mun B S, Arenz M, et al. Trends in elecrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces [J]. Nature Materials, 2007, 6(3): 241-247.[6] Chen S, Sheng W, Yabuuchi N, et al. Origin of oxygen reduction reaction activity on “Pt3Co” nanoparticles: atomically resolved chemical compositions and structures [J]. The Journal of Physical Chemistry C, 2009, 113(3): 1109-1125.[7] Watanabe M, Tsurumi K, Mizukami T, et al. Activity and stability of ordered and disordered Co-Pt alloys for phosphoric acid fuel cells [J]. Journal of The Electrochemical Society, 1994, 141(10): 2659-2668.[8] Ding Y, Chen M and Erlebacher J. Metallic mesoporous nanocomposites for electrocatalysis [J]. Journal of the American Chemical Society, 2004,126(22): 6876-6877.[9] Paffet M T, Beery G J, Gottesfeld S. Oxygen reduction at Pt0.65Cr0.35, Pt0.2Cr0.8 and roughened platnium [J]. Journal of The Electrochemical Society, 1988, 135(6): 1431-1436.[10] Toda T, Igarashi H, Uchida H, et al. Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co [J]. Journal of The Electrochemical Society, 1999, 146(10): 3750-3756.[11] Stamenkovic V R, Fowler Ben, Mun B S, et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability [J]. Science, 2007, 315(5811): 493-497.[12] Strasser P, Koh S, Anniyev T, et al. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts [J]. Nature Chemistry, 2010, 2(6): 454-460.[13] Yu C, Koh S, Leisch J E, et al. Size and composition distribution dynamics of alloy nanoparticle electrocatalysts probed by anomalous small angle X-ray scattering(ASAXS) [J]. Faraday Discussion, 2009, 140: 283- 297.[14] Yang R Z, Leisch J, Strasser P, et al. Structure of dealloyed PtCu3 thin films and catalytic activity for oxygen reduction [J]. Chemistry of Materials, 2010, 22(16): 4712-4720.[15] Yang R Z, Strasser P and Toney M F. [J]. Dealloying of Cu3Pt (111) studied by surface x-ray scattering. The Journal of Physical Chemistry C, 2011,115(18): 9074-9080.[16] Erlebacher J, Aziz M J, Karma A, et al. Evolution of nanoporosity in dealloying [J]. Nature, 2010, 410(6827): 450-453.[17] Snyder J, Fujita T, Chen M W, et al. Oxygen reduction in nanoporous metal-ionic liquid composite electrocatalysts [J]. Nature Material, 2010, 9(11): 904-907.[18] Zhang Z, Wang Y, Qi Z, et al. Generalized fabrication of nanoporous metals (Au, Pd, Pt, Ag, and Cu) through chemical dealloying [J]. The Journal of Physical Chemistry C, 2009,113(29): 12629-12636. |