电化学(中英文) ›› 2011, Vol. 17 ›› Issue (1): 31-36. doi: 10.61558/2993-074X.2076
周宥辰;王艳艳;马志方;姜艳霞;邱瑾;孙世刚;
收稿日期:
2011-02-28
修回日期:
2011-02-28
出版日期:
2011-02-28
发布日期:
2011-02-28
ZHOU You-chen,WANG Yan-yan,MA Zhi-fang,JIANG Yan-xia, QIU Jin,SUN Shi-gang
Received:
2011-02-28
Revised:
2011-02-28
Published:
2011-02-28
Online:
2011-02-28
摘要: 建立一种由单一水相操作的表面等离子体共振法(SPR)制备金基底.即:在3-氨基丙基三甲氧基硅烷(APTMS)修饰的玻璃片上自组装一层细小的金胶纳米粒子,以此为催化模板,利用化学镀技术在纳米尺度范围内控制金膜的均匀增长,获得优异SPR信号响应所需要的金膜形貌和厚度.紫外光谱(UV-vis),透射电镜(TEM)观测表明,纳米金膜催化模板粒径约为2.5 nm.扫描电镜(SEM)观察湿化学镀SPR金基底均匀分布,粒径约为40 nm.与商品化真空镀金基底相比,湿化学镀金基底对乙醇的SPR响应强度相当,且可调控性更高.
中图分类号:
周宥辰, 王艳艳, 马志方, 姜艳霞, 邱瑾, 孙世刚, . 湿化学镀SPR金基底及其性能表征[J]. 电化学(中英文), 2011, 17(1): 31-36.
ZHOU You-chen, WANG Yan-yan, MA Zhi-fang, JIANG Yan-xia, QIU Jin, SUN Shi-gang. Prepartion and Characterization of SPR Au Substrate Using Wet Chemical Plating[J]. Journal of Electrochemistry, 2011, 17(1): 31-36.
[1]Chia-Chen Chang,Nan-Fu Chiu,David Shenhsiung Lin,et al.High-sensitivity detection of carbohydrate antigen15-3 using a gold/zinc oxide thin film surface plasmonresonance-based biosensor[J].Anal Chem,2010,82(4):1207-1212.[2]Sabine Szunerits,Xavier Castel,Rabah Boukherroub.Surface plasmon resonance investigation of silver andgold films coated with thin indium tin oxide layers:influ-enceon stability and sensitivity[J].J Phys Chem C,2008,112(40):15813-15817.[3]Ludovic S Live,Marie-Pier Murray-Methot,Jean-Fran-cois Masson.Localized and propagating surface plasmonsin gold particles of near-micron size[J].J Phys ChemC,2009,113(1):40-44.[4]Bo Huang,Fang Yu,Richard N Zare.Surface plasmon r-esonance imaging using a high numerical aperture mi-croscope objective[J].Anal Chem,2007,79(7):2979-2983.[5]Mikael Svedendahl,Si Chen,Alexandre Dmitriev,et al.Refractometric sensing using propagating versus local-ized surface plasmons:a direct comparison[J].NanoLett,2009,9(12):4428-4433.[6]Bryan C Sih,Michael O Wolf.Dielectric medium effectson collective surface plasmon coupling interaction in oli-gothiophene-linked gold nanoparticles[J].J Phys ChemB,2006,110(45):22298-22301.[7]Taewook Kang,Surin Hong,Hyun Jin Kim,et al.Char-acterization of surface-confined-synuclein by surfaceplasmon resonance measurements[J].Langmuir,2006,22(1):13-17.[8]Milan Mrksich.Mass spectrometry of self-assembledmonolayers:a new tool for molecular surface science[J].ACS Nano,2008,2(1):7-18.[9]Juewen Liu,Zehui Cao,Yi Lu.Functional nucleic acidsensors[M].Chem Rev,2009,109(5):1948-1998.[10]Ong B H,Yuan X,Tjin S C,et al.Optimised filmthickness for maximum evanescent field enhancementof a bimetallic film surface plasmon resonance biosen-sor[J].Sens Actuators B:Chemical,2006,114(2):1028-1034.[11]Naraoka R Kajikawa.Phase detection of surface plas-mon using rotating analyzer method[J].Sens Actua-tors B:Chemical,2005,107(2):952-956.[12]Wu Ying-cai(吴英才),Gu Zheng-xian(顾铮先).Research on the optimum thickness of metallic thinfilm utilized to excite surface plasmon resonance[J].Acta Physica Sinica(物理学报),2008,57(4):2295-2299.[13]Seogil O,Jungwoo M,Taewook K,et al.Enhancementof surface plasmon resonance(SPR)signals using or-ganic functionalized mesoporous silica on a gold film[J].Sensors and Actuators B:Chemical,2006,114(2):1096-1099.[14]Ou Hui-chao(欧惠超),Jiang hao(姜浩),ZhouHong-min(周宏敏),et al.Methods for regeneration offive kinds of SPR sensor chips and their application[J].China Biotechnology(中国生物工程杂志),2009,29(1):44-49.[15]Huo Sheng-juan(霍胜娟).币族及铁族金属表面增强红外吸收基底的湿法构造与应用[D].Shanghai:Fudan University,2007.[16]Grabar K C,Allison K J,Baker B E,et al.Two-dimen-sional arrays of colloidal gold particles:a flexible ap-proach to macroscopic metal surfaces[J].Langmuir,1996,12(10):2353-2361.[17]Mulvaney P,Giersig M.Imaging nanosized gold co-lloids by atomic force microscopy:a direct comparisonwith transmission electron microscopy[J].J ChemSoc,Faraday Trans,1996,92(17):3137-3143.[18]Xu Xiao-jun(许晓军),Li Yan(李燕),Sui Cheng-hua(隋成华).Mesurement of Concentration of alcoholSolution with surface plasmon resonance sensor[J].Semiconductor Optoelectronics(半导体光电),2009,30(6):984-987.[19]BI-SPR1000 System User's Manual[M].version 2.4,2006.[20]刘斌.差分型SPR仪的搭建及用于万古霉素/抗体相互作用研究[D].Changsha:Central South Univer-sity,2007. |
[1] | 陈品松, 胡一涛, 张信义, 沈培康. 立体构造石墨烯材料对铅酸蓄电池负极性能影响的研究[J]. 电化学(中英文), 2020, 26(6): 834-843. |
[2] | 张泽阳, 孙岚, 林昌健. RGO-TiO2纳米管阵列的制备及其光电性能[J]. 电化学(中英文), 2020, 26(6): 844-849. |
[3] | 马武威, 常启刚, 史雄芳, 童延斌, 周立, 叶邦策, 鲁建江, 赵金虎. 基于纳米孔金与离子印迹聚合物结合的新型电化学传感器用于测定砷离子(III)[J]. 电化学(中英文), 2020, 26(6): 900-910. |
[4] | 杨纳川, 王玉, 帅毅, 陈康华. 低成本硫化物固态电解质Li6-xPS5-xClx的制备与性能研究[J]. 电化学(中英文), 2020, 26(6): 885-889. |
[5] | 晋通正, 杨雨萌, 范圣慧, 卫国英, 张昭. 溶解氧及波长对光助阳极沉积CeO2薄膜的影响[J]. 电化学(中英文), 2020, 26(6): 868-875. |
[6] | 娄景媛, 尤东江, 李雪菁. 全钒氧化还原液流电池用石墨毡电极的分步氧化活化[J]. 电化学(中英文), 2020, 26(6): 876-884. |
[7] | 吴凯. 锂硫电池正极材料的制备及工艺优化[J]. 电化学(中英文), 2020, 26(6): 825-833. |
[8] | 俞成荣, 朱建国, 蒋聪盈, 谷宇晨, 周晔欣, 李卓斌, 邬荣敏, 仲政, 官万兵. 基于电-化-热耦合理论对称双阴极固体氧化物燃料电池堆的电流与温度场数值模拟[J]. 电化学(中英文), 2020, 26(6): 789-796. |
[9] | 朱畅, 陈为, 宋艳芳, 董笑, 李桂花, 魏伟, 孙予罕. 反应条件对铜催化CO2电还原的影响[J]. 电化学(中英文), 2020, 26(6): 797-807. |
[10] | 王学良, 丛媛媛, 邱晨曦, 王盛杰, 秦嘉琪, 宋玉江. 核壳结构Ru@PtRu纳米花电催化剂的制备及碱性氢析出反应性能研究[J]. 电化学(中英文), 2020, 26(6): 815-824. |
[11] | 段明涛, 蒙延双, 张红帅. Ni3S2@碳纳米管复合材料的制备及其储钠性能[J]. 电化学(中英文), 2020, 26(6): 850-858. |
[12] | 王存, 张维江, 何腾飞, 雷博, 史尤杰, 郑耀东, 罗伟林, 蒋方明. NCA三元锂离子电池分荷电状态循环的热特性和容量衰退研究[J]. 电化学(中英文), 2020, 26(6): 777-788. |
[13] | 王怡捷, 钮东方, 张新胜. 离子液体中18-冠醚-6添加剂对三价铬电沉积的影响[J]. 电化学(中英文), 2020, 26(6): 859-867. |
[14] | 沈茎, 王子明, 郑大江, 宋光铃. 钝化与过钝化状态下304不锈钢的点蚀行为研究[J]. 电化学(中英文), 2020, 26(6): 808-814. |
[15] | 邢逸飞, 李娜, 温晓芳, 韩宏彦, 崔敏, 张聪, 任聚杰, 籍雪平. 基于取代型多酸复合材料的多巴胺电化学检测[J]. 电化学(中英文), 2020, 26(6): 890-899. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||