[1] |
Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38.
|
[2] |
Wang Z, Li C, Domen K. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting[J]. Chem. Soc. Rev., 2019, 48(7): 2109-2125.
doi: 10.1039/c8cs00542g
pmid: 30328438
|
[3] |
Wang Y Q, Zhao D M, Deng H, Li M T, Chen J, Shen S H. Theoretical insights into the limitation of photocatalytic overall water splitting performance of via group elements doped polymeric carbon nitride: a density functional theory calculation predicting solar-to-hydrogen efficiency[J]. Solar RRL, 2021, 5(6): 2000630.
|
[4] |
Rahman M Z, Edvinsson T, Gascon J. Hole utilization in solar hydrogen production[J]. Nat. Rev. Chem., 2022, 6(4): 243-258.
doi: 10.1038/s41570-022-00366-w
pmid: 37117865
|
[5] |
Wang Y, Vogel A, Sachs M, Sprick R S, Wilbraham L, Moniz S J A, Godin R, Zwijnenburg M A, Durrant J R, Cooper A I, Tang J. Current understanding and challenges of solar-driven hydrogen generation using polymeric photocatalysts[J]. Nat. Energy, 2019, 4(9): 746-760.
|
[6] |
Zhang G G, Huang C J, Wang X C. Dispersing molecular cobalt in graphitic carbon nitride frameworks for photocatalytic water oxidation[J]. Small, 2015, 11(9-10): 1215-1221.
doi: 10.1002/smll.201402636
pmid: 25302641
|
[7] |
Zhao D M, Dong C L, Wang B, Chen C, Huang Y C, Diao Z D, Li S Z, Guo L J, Shen S H. Synergy of dopants and defects in graphitic carbon nitride with exceptionally modulated band structures for efficient photocatalytic oxygen evolution[J]. Adv. Mater., 2019, 31(43): 1903545.
|
[8] |
Zhao D M, Wang Y Q, Dong C L, Huang Y C, Chen J, Xue F, Shen S H, Guo L J. Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting[J]. Nat. Energy, 2021, 6(4): 388-397.
|
[9] |
Yang B, Lu L L, Liu S Y, Cheng W J, Liu H, Huang C, Meng X T, Rodriguez R D, Jia X. Recent progress in perylene diimide supermolecule-based photocatalysts[J]. J. Mater. Chem. A, 2024, 12(7): 3807-3843.
|
[10] |
Zhang Z J, Chen X J, Zhang H J, Liu W X, Zhu W, Zhu Y F. A highly crystalline perylene imide polymer with the robust built-in electric field for efficient photocatalytic water oxidation[J]. Adv. Mater., 2020, 32(32): 1907746.
|
[11] |
Lin Z, Wang Y Q, Peng Z M, Huang Y C, Meng F Q, Chen J L, Dong C L, Zhang Q H, Wang R Z, Zhao D M. Single‐metal atoms and ultra‐small clusters manipulating charge carrier migration in polymeric perylene diimide for efficient photocatalytic oxygen production[J]. Adv. Energy Mater., 2022, 12(26): 2200716.
|
[12] |
Kresse G, Furthmüller J. Efficient iterative schemes for Ab initio total-energy calculations using a plane-wave basis set[J]. Phys. Rev. B, 1996, 54(16): 11169-11186.
doi: 10.1103/physrevb.54.11169
pmid: 9984901
|
[13] |
Kresse G, Hafner J. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements[J]. J. Phys. Cond. Matter, 1994, 6(40): 8245.
|
[14] |
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1996, 77(18): 3865-3868.
doi: 10.1103/PhysRevLett.77.3865
pmid: 10062328
|
[15] |
Bučko T, Lebègue S, Hafner J, Ángyán JG. Tkatchenko-Scheffler Van Der Waals correction method with and without self-consistent screening applied to solids[J]. Phys. Rev. B, 2013, 87(6): 064110.
|
[16] |
Nørskov J K, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin J R, Bligaard T, Jónsson H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode[J]. J. Phys. Chem. B, 2004, 108(46): 17886-17892.
|
[17] |
Medford A J, Shi C, Hoffmann M J, Lausche A C, Fitzgibbon S R, Bligaard T, Nørskov J K. Catmap: A Software package for descriptor-based microkinetic mapping of catalytic trends[J]. Catal. Lett., 2015, 145(3): 794-807.
|
[18] |
Kibsgaard J, Jaramillo TF. Molybdenum phosphosulfide: an active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction[J]. Angew. Chem. Int. Ed., 2014, 53(52): 14433-14437.
doi: 10.1002/anie.201408222
pmid: 25359678
|
[19] |
Boultif A, Louër D. Indexing of powder diffraction patterns for low-symmetry lattices by the successive dichotomy method[J]. J. Appl. Cryst., 1991, 24(6): 987-993.
|
[20] |
Qin J Y, Shu Q W, Yuan Y, Qiu W, Xiao L H, Peng P, Lu G S. First-principles investigation on electronic structure and solar radiation shielding performance of Tl0.33Wo3[J]. Acta Phys. Sin., 2020, 69(4): 047102-047101-047102-047107.
|
[21] |
Luo J J, Wang X M, Li S R, Liu J, Guo Y M, Niu G D, Yao L, Fu Y H, Gao L, Dong Q S, Zhao C Y, Leng M Y, Ma F S, Liang W X, Wang L D, Jin S Y, Han J B, Zhang L J, Etheridge J, Wang J B, Yan Y F, Sargent E H, Tang J. Efficient and stable emission of warm-white light from lead-free halide double perovskites[J]. Nature, 2018, 563(7732): 541-545.
|
[22] |
Yi Y W, Quan C Y, Long F, Pu Y, Li X A. Exploring the thickness dependent photocatalytic oxygen evolution performance for Bi4TaO8Cl two-dimensional semiconductor[J]. Appl. Surf. Sci., 2021, 539: 148193.
|
[23] |
Sze S M, Ng K K. Physics of semiconductor devices[M]. Berlin, Germany: Springer, 2006.
|
[24] |
Deringer V L, Tchougréeff A L, Dronskowski R. Crystal orbital hamilton population (COHP) analysis as projected from plane-wave basis sets[J]. J. Phys. Chem. A, 2011, 115(21): 5461-5466.
doi: 10.1021/jp202489s
pmid: 21548594
|
[25] |
Wang Z Q, Zheng Z Q, Xue Y R, He F, Li Y L. Acidic water oxidation on quantum dots of IrOx/graphdiyne[J]. Adv. Energy Mater., 2021, 11(32): 2101138.
|
[26] |
Lin S, Ye X, Gao X, Huang J. Mechanistic insight into the water photooxidation on pure and sulfur-doped g-C3N4 photocatalysts from DFT calculations with dispersion corrections[J]. J. Mol. Catal. A: Chem., 2015, 406: 137-144.
|