欢迎访问《电化学(中英文)》期刊官方网站,今天是

电化学(中英文) ›› 2025, Vol. 31 ›› Issue (5): 2418002.  doi: 10.61558/2993-074X.3523

• 论文 • 上一篇    下一篇

聚苝酰亚胺原子和电子结构的理论见解:光催化析氧活性的起源

王亦清, 林治, 李明涛, 沈少华*()   

  1. 国际可再生能源研究中心,动力工程多相流国家重点实验室,西安交通大学,西安 710049
  • 收稿日期:2024-12-23 修回日期:2025-01-21 接受日期:2025-02-07 发布日期:2025-02-08 出版日期:2025-05-28

Theoretical Insights into the Atomic and Electronic Structures of Polyperyleneimide: On the Origin of Photocatalytic Oxygen Evolution Activity

Yi-Qing Wang, Zhi Lin, Ming-Tao Li, Shao-Hua Shen*()   

  1. International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, China
  • Received:2024-12-23 Revised:2025-01-21 Accepted:2025-02-07 Online:2025-02-08 Published:2025-05-28
  • Contact: *Shao-Hua Shen, E-mail: shshen_xjtu@mail.xjtu.edu.cn

摘要:

聚苝酰亚胺被认为是光催化析氧的优异候选材料,但其光催化析氧反应活性的来源仍需要进一步的探索。本文基于X射线衍射谱解析了自组装合成聚苝酰亚胺的晶体和原子结构,并利用第一原理密度泛函理论计算阐明其电子结构,证实聚苝酰亚胺具有适合光催化析氧反应的能带结构和优异的电子激发效率。晶体轨道哈密顿布居分析证实,共轭结构中尿素和苝环之间的羰基氧原子是光催化析氧的反应活性位点。反应自由能变化计算表明,聚苝酰亚胺表面的光催化析氧反应遵循H2O → *OH → *O → *OOH → *O2的反应路径,过电位为0.81 V。通过对原子结构和电子结构的理论研究,本文阐明了聚苝酰亚胺光催化析氧反应的活性起源,为高效光催化析氧聚合物光催化剂的设计和改性提供理论指导。

关键词: 光催化析氧反应, 聚苝酰亚胺, 原子结构, 电子结构, 反应路径

Abstract:

Polymeric perylene diimide (PDI) has been evidenced as a good candidate for photocatalytic water oxidation, yet the origin of the photocatalytic oxygen evolution activity remains unclear and needs further exploration. Herein, with crystal and atomic structures of the self-assembled PDI revealed from the X-ray diffraction pattern, the electronic structure is theoretically illustrated by the first-principles density functional theory calculations, suggesting the suitable band structure and the direct electronic transition for efficient photocatalytic oxygen evolution over PDI. It is confirmed that the carbonyl O atoms on the conjugation structure serve as the active sites for oxygen evolution reaction by the crystal orbital Hamiltonian group analysis. The calculations of reaction free energy changes indicate that the oxygen evolution reaction should follow the reaction pathway of H2O → *OH → *O → *OOH → *O2 with an overpotential of 0.81 V. Through an in-depth theoretical computational analysis in the atomic and electronic structures, the origin of photocatalytic oxygen evolution activity for PDI is well illustrated, which would help the rational design and modification of polymeric photocatalysts for efficient oxygen evolution.

Key words: Photocatalytic oxygen evolution, Polymeric perylene diimide, Atomic structure, Electronic structure, Reaction pathway