[1] |
Ding Y N, Tan K W, Zhang S C, Wang S, Zhang X, Hu P A. Wearable and recyclable epinephrine biosensors based on molecular imprinting polymer modified organic electrochemical transistors[J]. Chem. Eng. J., 2023, 477: 146844.
|
[2] |
Srivastava A, Kumar G, Kumar P, Srikrishna S, Chandra P, Singh V P. Thiazole-based silver ion sensor for sequential colorimetric visualization of epinephrine in the brain tissues of an Alzheimer's disease model of mouse[J]. ACS Appl. Bio Mater., 2024, 7(5): 3271-3282.
|
[3] |
Su Y, Bian S M, Sawan M. Real-time in vivo detection techniques for neurotransmitters: A review[J]. Analyst, 2020, 145(19): 6193-6210.
|
[4] |
Leau S A, Lete C, Lupu S. Nanocomposite materials based on metal nanoparticles for the electrochemical sensing of neurotransmitters[J]. Chemosensors, 2023, 11(3): 179.
|
[5] |
Xu Q Q, Wang Q Q, Liu Z G, Guo Z, Huang X J. Ultrafine Co3O4 nanoparticle-loaded carbon spheres for the simultaneous ultrasensitive electrochemical determination of hydroquinone and catechol[J]. ACS Sustain. Chem. Eng., 2023, 11(47): 16764-16773.
|
[6] |
Kumar P, Rajan R, Upadhyaya K, Behl G, Xiang X X, Huo P P, Liu B. Metal oxide nanomaterials based electrochemical and optical biosensors for biomedical applications: Recent advances and future prospectives[J]. Environ. Res., 2024, 247: 118002.
|
[7] |
Li B, Meng T H, Xie X M, Guo X T, Li Q Z, Du W B, Zhang X A, Meng X R, Pang H. Fe-based Composites-enabled electrochemical sensors for nitrite detection: A review[J]. Mater. Today Chem., 2023, 33: 101747.
|
[8] |
Qian L T, Durairaj S, Prins S, Chen A C. Nanomaterial-based electrochemical sensors and biosensors for the detection of pharmaceutical compounds[J]. Biosens. Bioelectron., 2021, 175: 112836.
|
[9] |
Du Y J, Jia X T, Zhong L, Jiao Y, Zhang Z J, Wang Z Y, Feng Y X, Bilal M, Cui J D, Jia S R. Metal-organic frameworks with different dimensionalities: An ideal host platform for enzyme@MOF composites[J]. Coordin. Chem. Rev., 2022, 454: 214327.
|
[10] |
Peng Y, Sanati S, Morsali A, Garcia H. Metal-organic frameworks as electrocatalysts[J]. Angew. Chem. Int. Ed., 2023, 62(9): e202214707.
|
[11] |
Mohan B, Priyanka Singh G, Chauhan A, Pombeiro A J L, Ren P Metal-organic frameworks(MOFs) based luminescent and electrochemical sensors for food contaminant detection[J]. J. Hazard. Mater., 2023, 453: 131324.
|
[12] |
Rasheed T, Rizwan K. Metal-organic frameworks based hybrid nanocomposites as state-of-the-art analytical tools for electrochemical sensing applications[J]. Biosens. Bioelectron., 2022, 199: 113867.
|
[13] |
Chen X R, Sun D L, Wu W, Wu P, Yang F, Liu J, Ma Z L, Zhang Y Y, Zheng D Y. Boosting the electrochemcial activity of Fe-MIL-101 via acid modulators for highly sensitive detection of o-nitrophenol[J]. Microchem. J., 2022, 183: 108076.
|
[14] |
Lakhan M N, Hanan A, Wang Y, Liu S M, Arandiyan H. Recent progress on nickel- and iron-based metallic organic frameworks for oxygen evolution reaction: A review[J]. Langmuir, 2024, 40(5): 2465-2486.
|
[15] |
Ling C, Leng X Y, Lu X J, Li J H, Yang Z K, Xu A W. A self-supported S-doped Fe-based organic framework platform enhances electrocatalysis toward highly efficient oxygen evolution in alkaline media[J]. J. Mater. Chem. A, 2022, 10(33): 17246-17253.
|
[16] |
Kavya K V, Muthu D, Varghese S, Pattappan D, Kumar R T R, Haldorai Y. Glassy carbon electrode modified by gold nanofibers decorated iron metal-organic framework nanocomposite for voltammetric determination of acetaminophen[J]. Carbon Lett., 2022, 32(6): 1441-1449.
|
[17] |
Liang H, Liu R P, Hu C Z, An X Q, Zhang X W, Liu H J, Qu J H. Synergistic effect of dual sites on bimetal-organic frameworks for highly efficient peroxide activation[J]. J. Hazard. Mater., 2021, 406: 124692-124701.
|
[18] |
Wang S, Li Q, Sun S J, Ge K, Zhao Y, Yang K, Zhang Z H, Cao J Y, Lu J, Yang Y F, Zhang Y, Pan M W, Lin Z Q, Zhu L. Heterostructured ferroelectric BaTiO3@MOF-Fe/Co electrocatalysts for efficient oxygen evolution reaction[J]. J. Mater. Chem. A, 2022, 10(10): 5350-5360.
|
[19] |
Peng Y, Yu L Y, Sheng M T, Wang Q, Jin Z Y, Huang J S, Yang X R. Room-temperature synthesized iron/cobalt metal-organic framework nanosheets with highly efficient catalytic activity toward luminol chemiluminescence reaction[J]. Anal. Chem., 2023, 95(50): 18436-18442.
doi: 10.1021/acs.analchem.3c03538
pmid: 38058120
|
[20] |
Hang X X, Yang R, Xue Y D, Zheng S S, Shan Y Y, Du M, Zhao J W, Pang H. The introduction of cobalt element into nickel-organic framework for enhanced supercapacitive performance[J]. Chin. Chem. Lett., 2023, 34(7): 107787.
|
[21] |
Cui S M, Shao Y J, Zhong W Q. Synthesis and characterization of novel bimetallic Mg-Ca/DOBDC metal-organic frameworks as a high stability CO2 adsorbent[J]. Chem. Eng. J., 2023, 474: 145018.
|
[22] |
Luo J, Luo X, Gan Y H, Xu X M, Xu B, Liu Z, Ding C C, Cui Y B, Sun C. Advantages of bimetallic organic frameworks in the adsorption, catalysis and detection for water contaminants[J]. Nanomaterials, 2023, 13(15): 2194.
|
[23] |
Sanati S, Abazari R, Albero J, Morsali A, Garcia H, Liang Z B, Zou R Q. Metal-organic framework derived bimetallic materials for electrochemical energy storage[J]. Angew. Chem. Int. Ed., 2021, 60(20): 11048-11067.
|
[24] |
Wang X L, Dong L Z, Qiao M, Tang Y J, Liu J, Li Y, Li S L, Su J X, Lan Y Q. Exploring the performance improvement of the oxygen evolution reaction in a stable bimetal-organic framework system[J]. Angew. Chem. Int. Ed., 2018, 57(31): 9660-9664.
|
[25] |
Yang H G, Yang R T, Zhang P, Qin Y M, Chen T, Ye F G. A bimetallic(Co/2Fe) metal-organic framework with oxidase and peroxidase mimicking activity for colorimetric detection of hydrogen peroxide[J]. Microchim. Acta, 2017, 184(12): 4629-4635.
|
[26] |
Xie J W, Cheng D, Li P P, Xu Z J, Zhu X H, Zhang Y Y, Li H T, Liu X Y, Liu M L, Yao S Z. Au/Metal-organic framework nanocapsules for electrochemical determination of glutathione[J]. ACS Appl. Nano Mater., 2021, 4(5): 4853-4862.
|
[27] |
Fu X C, Ding B W, D'Alessandro D. Fabrication strategies for metal-organic framework electrochemical biosensors and their applications[J]. Coordin. Chem. Rev., 2023, 475: 214814.
|
[28] |
Danis L, Polcari D, Kwan A, Gateman S M, Mauzeroll J. Fabrication of carbon, gold, platinum, silver, and mercury ultramicroelectrodes with controlled geometry[J]. Anal. Chem., 2015, 87(5): 2565-2569.
doi: 10.1021/ac503767n
pmid: 25629426
|
[29] |
Moussa S, Mauzeroll J. Review-Microelectrodes: An overview of probe development and bioelectrochemistry applications from 2013 to 2018[J]. J. Electrochem. Soc., 2019, 166(6): G25-G38.
|
[30] |
Xiao T, Huang J S, Wang D W, Meng T, Yang X R. Au and Au-Based nanomaterials: Synthesis and recent progress in electrochemical sensor applications[J]. Talanta, 2020, 206: 120210.
|
[31] |
Sajid M, Nazal M K, Mansha M, Alsharaa A, Jillani S M S, Basheer C. Chemically modified electrodes for electrochemical detection of dopamine in the presence of uric acid and ascorbic acid: A review[J]. Trac-Trend Anal. Chem., 2016, 76: 15-29.
|
[32] |
Chen Y, Yang X J, Liu Z G, Liu G H, Guo Z. NH2-MIL-101(Fe) anchored onto nanoporous gold microelectrode: Highly sensitive electrochemical platform for simultaneously sensing of ascorbic acid and uric acid[J]. Microchem. J., 2024, 198: 110152.
|
[33] |
Farahani F S, Rahmanifar M S, Noori A, El-Kady M F, Hassani N, Neek-Amal M, Kaner R B, Mousavi M F. Trilayer metal-organic frameworks as multifunctional electrocatalysts for energy conversion and storage applications[J]. J. Am. Chem. Soc., 2022, 144(8): 3411-3428.
doi: 10.1021/jacs.1c10963
pmid: 35167746
|
[34] |
Li M Y, Dinca M. Reductive electrosynthesis of crystalline metal-organic frameworks[J]. J. Am. Chem. Soc., 2011, 133(33): 12926-12929.
doi: 10.1021/ja2041546
pmid: 21790152
|
[35] |
Wang Q, Lu J H, Jiang Y, Yang S R, Yang Y, Wang Z H. FeCo bimetallic metal organic framework nanosheets as peroxymonosulfate activator for selective oxidation of organic pollutants[J]. Chem. Eng. J., 2022, 443: 136483.
|
[36] |
Chen J L, Liu J, Xu S J, Wu Y, Ye Y N, Qian J J. Bimetallic ZnCo-MOF derived porous Ir-doped cobalt oxides for water oxidation with improved activity and stability[J]. Inorg. Chem. Front, 2024, 11(15): 4876-4885.
|
[37] |
Jiang N, Song J L, Yan M Y, Hu Y, Wang M M, Liu Y B, Huang M H. Iron cobalt-doped carbon nanofibers anode to simultaneously boost bioelectrocatalysis and direct electron transfer in microbial fuel cells: Characterization, performance, and mechanism[J]. Bioresour. Technol., 2023, 367: 128230.
|
[38] |
Vijayaraghavan P, Wang Y Y, Palanisamy S, Lee L Y, Chen Y K, Tzou S C, Yuan S S F, Wang Y M. Hierarchical ensembles of FeCo metal-organic frameworks reinforced nickel foam as an impedimetric sensor for detection of IL-1RA in human samples[J]. Chem. Eng. J., 2023, 458: 141444.
|
[39] |
Liu K K, Chen Y A, Dong X L, Hu Y M, Huang H P. Bimetallic FeCo metal-organic-frameworks anchored multi-walled carbon nanotubes for electrochemical nitrite sensing[J]. Electrochim. Acta, 2023, 456: 142441.
|
[40] |
Xie M W, Ma, Y, Lin D M, Xu C G, Xie F Y, Zeng W. Bimetal-organic framework MIL-53(Co-Fe): an efficient and robust electrocatalyst for the oxygen evolution reaction[J]. Nanoscale, 2020, 12(1): 67-71.
doi: 10.1039/c9nr06883j
pmid: 31807741
|
[41] |
Wierzbicka E, Sulka G D. Fabrication of highly ordered nanoporous thin Au films and their application for electrochemical determination of epinephrine[J]. Sens. Actuators B: Chem., 2016, 222: 270-279.
|
[42] |
Zhang J D, Kambayashi M, Oyama M. Seed mediated growth of gold nanoparticles on indium tin oxide electrodes: Electrochemical characterization and evaluation[J]. Electroanalysis, 2005, 17(5-6): 408-416.
|
[43] |
Tortolini C, Cass A E G, Pofi R, Lenzi A, Antiochia R. Microneedle-based nanoporous gold electrochemical sensor for real-time catecholamine detection[J]. Microchim. Acta, 2022, 189(5): 180.
|
[44] |
Soosaimanickam C, Sakthivel A, Murugavel K, Alwarappan S. Zeolite imidazolate framework-based platform for the electrochemical detection of epinephrine[J]. J. Electrochem. Soc., 2023, 170(10): 107504.
|
[45] |
Da Silva L V, Dos Santos, N D, De Almeida A K A, Dos Santos D D E R, Ferreira Santos A C, Franca M C, Lima D J P, Lima P R, Goulart M O F. A new electrochemical sensor based on oxidized capsaicin/multi-walled carbon nanotubes/glassy carbon electrode for the quantification of dopamine, epinephrine, and xanthurenic, ascorbic and uric acids[J]. J. Electroanal. Chem., 2021, 881: 114919.
|
[46] |
Mphuthi N G, Adekunle A S, Ebenso E E. Electrocatalytic oxidation of Epinephrine and Norepinephrine at metal oxide doped phthalocyanine/MWCNT composite sensor[J]. Sci. Rep., 2016, 6: 26938.
doi: 10.1038/srep26938
pmid: 27245690
|
[47] |
Tohidinia M, Noroozifar M. Investigation of carbon allotropes for simultaneous determination of ascorbic acid, epinephrine, uric acid, nitrite and xanthine[J]. Inter. J. Electrochem. Sci., 2018, 13(3): 2310-2328.
|
[48] |
Wierzbicka E, Szultka Mlynska M, Buszewski B, Sulka G D. Epinephrine sensing at nanostructured Au electrode and determination its oxidative metabolism[J]. Sens. Actuators B: Chem., 2016, 237: 206-215.
|
[49] |
Ibanez Redin G, Wilson D, Goncalves D, Oliveira O N, Jr. Low-cost screen-printed electrodes based on electrochemically reduced graphene oxide-carbon black nanocomposites for dopamine, epinephrine and paracetamol detection[J]. J. Colloid Interface Sci., 2018, 515: 101-108.
|
[50] |
Wierzbicka E, Sulka G D. Nanoporous spongelike Au-Ag films for electrochemical epinephrine sensing[J]. J. Electroanal. Chem., 2016, 762: 43-50.
|