[1] |
Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657.
|
[2] |
Liang J, Li X, Zhao Y, Goncharova L V, Wang G, Adair K R, Wang C, Li R, Zhu Y, Qian Y, Zhang L, Yang R, Lu S, Sun X. In situ Li3PS4 solid-state electrolyte protection layers for superior long-life and high-rate lithium-metal anodes[J]. Adv. Mater., 2018, 30(45): 1804684.
|
[3] |
Chang N N, Li T Y, Li R, Wang S N, Yin Y B, Zhang H M, Li X F. An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices[J]. Energy Environ. Sci., 2020, 13(10): 3527-3535.
|
[4] |
Wang Y G, Yi J, Xia Y Y. Recent progress in aqueous lithium-ion batteries[J]. Adv. Energy Mater., 2012, 2(7): 830-840.
|
[5] |
Jia X X, Liu C F, Neale Z G, Yang J H, Cao G Z. Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry[J]. Chem. Rev., 2020, 120(15): 7795-7866.
doi: 10.1021/acs.chemrev.9b00628
pmid: 32786670
|
[6] |
Cai Z, Wang J, Sun Y. Anode corrosion in aqueous Zn metal batteries[J]. eScience, 2023, 3(1): 100093.
|
[7] |
Wang F, Borodin O, Gao T, Fan X, Sun W, Han F, Faraone A, Dura J A, Xu K, Wang C. Highly reversible zinc metal anode for aqueous batteries[J]. Nat. Mater., 2018, 17(6): 543-549.
doi: 10.1038/s41563-018-0063-z
pmid: 29662160
|
[8] |
Suo L M, Borodin O, Gao T, Olguin M, Ho J, Fan X L, Luo C, Wang C S, Xu K. "Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries[J]. Science, 2015, 350(6263): 938-943.
doi: 10.1126/science.aab1595
pmid: 26586759
|
[9] |
Sun P, Ma L, Zhou W H, Qiu M J, Wang Z L, Chao D L, Mai W J. Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive[J]. Angew. Chem. Int. Ed., 2021, 60(33): 18247-18255.
|
[10] |
Cao J, Zhang D D, Zhang X Y, Zeng Z Y, Qin J Q, Huang Y H. Strategies of regulating Zn2+ solvation structures for dendrite-free and side reaction-suppressed zinc-ion batteries[J]. Energy Environ. Sci., 2022, 15(2): 499-528.
|
[11] |
Ma G Q, Miao L C, Dong Y, Yuan W T, Nie X Y, Di S L, Wang Y Y, Wang L B, Zhang N. Reshaping the electrolyte structure and interface chemistry for stable aqueous zinc batteries[J]. Energy Storage Mater., 2022, 47: 203-210.
|
[12] |
Ye Z, Cao Z, Chee M O L, Dong P, Ajayan P M, Shen J, Ye M. Advances in Zn-ion batteries via regulating liquid electrolyte[J]. Energy Storage Mater., 2020, 32: 290-305.
|
[13] |
Cao L S, Li D, Hu E Y, Xu J J, Deng T, Ma L, Wang Y, Yang X, Q, Wang C S. Solvation structure design for aqueous Zn metal batteries[J]. J. Am. Chem. Soc., 2020, 142(51): 21404-21409.
doi: 10.1021/jacs.0c09794
pmid: 33290658
|
[14] |
Shi J Q, Sun T J, Bao J Q, Zheng S B, Du H H, Li L, Yuan X M, Ma T, Tao Z L. "Water-in-deep eutectic solvent" electrolytes for high-performance aqueous Zn-ion batteries[J]. Adv. Funct. Mater., 2021, 31(23): 2102035.
|
[15] |
Zhang Q, Ma Y L, Lu Y, Li L, Wan F, Zhang K, Chen J. Modulating electrolyte structure for ultralow temperature aqueous zinc batteries[J]. Nat. Commun., 2020, 11(1): 4463.
doi: 10.1038/s41467-020-18284-0
pmid: 32901045
|
[16] |
Li T C, Lin C, Luo M, Wang P, Li D S, Li S, Zhou J, Yang H Y. Interfacial molecule engineering for reversible Zn electrochemistry[J]. ACS Energy Lett., 2023, 8(8): 3258-3268.
|
[17] |
Li D, Cao L S, Deng T, Liu S F, Wang C S. Design of a solid electrolyte interphase for aqueous Zn batteries[J]. Angew. Chem. Int. Ed., 2021, 60(23): 13035-13041.
|
[18] |
Qiu M J, Ma L, Sun P, Wang Z L, Cui G F, Mai W J. Manipulating interfacial stability via absorption-competition mechanism for long-lifespan Zn anode[J]. Nano-Micro Lett., 2022, 14: 31.
|
[19] |
Yu L, Huang J, Wang S J, Qi L H, Wang S S, Chen C J. Ionic liquid "water pocket" for stable and environment-adaptable aqueous zinc metal batteries[J]. Adv. Mater., 2023, 35(21): 2210789.
|
[20] |
Malde A K, Zuo L, Breeze M, Stroet M, Poger D, Nair P C, Oostenbrink C, Mark A E. An automated force field topology builder (atb) and repository: version 1.0[J]. J. Chem. Theory Comput., 2011, 7(12): 4026-4037.
doi: 10.1021/ct200196m
pmid: 26598349
|
[21] |
Hess B. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation[J]. Abstr. Papers Am. Chem. Soc., 2009, 237: 435-447.
|
[22] |
Lomas J S, Joubert L, Maurel F. Association of symmetrical alkane diols with pyridine: DFT/GIAO calculation of 1H NMR chemical shifts[J]. Magn. Reson. Chem., 2016, 54(10): 805-814.
|
[23] |
Sun T J, Nian Q S, Ren X D, Tao Z L. Hydrogen-bond chemistry in rechargeable batteries[J]. Joule, 2023, 7(12): 2700-2731.
|
[24] |
Wei J, Zhang P B, Shen T Y, Liu Y Z, Dai T F, Tie Z X, Jin Z. Supramolecule-based excluded-volume electrolytes and conjugated sulfonamide cathodes for high-voltage and long-cycling aqueous zinc-ion batteries[J]. ACS Energy Lett., 2023, 8(1): 762-771.
|
[25] |
Lu H T, Zhang X L, Luo M H, Cao K S, Lu Y H, Xu B B, Pan H G, Tao K, Jiang Y Z. Amino acid-induced interface charge engineering enables highly reversible Zn anode[J]. Adv. Funct. Mater., 2021, 31(45): 2103514.
|
[26] |
Liu M Y, Yuan W T, Ma G Q, Qiu K Y, Nie X Y, Liu Y C, Shen S G, Zhang N. In-situ integration of a hydrophobic and fast-Zn2+-conductive inorganic interphase to stabilize Zn metal anodes[J]. Angew. Chem. Int. Ed., 2023, 62(27): e202304444.
|
[27] |
Chen W Y, Guo S, Qin L P, Li L Y, Cao X X, Zhou J, Luo Z G, Fang G Z, Liang S Q. Hydrogen bond-functionalized massive solvation modules stabilizing bilateral interfaces[J]. Adv. Funct. Mater., 2022, 32(20): 2112609.
|
[28] |
Zhao Z M, Zhao J W, Hu Z L, Li J D, Li J J, Zhang Y J, Wang C, Cui G L. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase[J]. Energy Environ. Sci., 2019, 12(6): 1938-1949.
|
[29] |
Miao L C, Wang R H, Di S L, Qian Z F, Zhang L, Xin W L, Liu M Y, Zhu Z Q, Chu S Q, Du Y, Zhang N. Aqueous electrolytes with hydrophobic organic cosolvents for stabilizing zinc metal anodes[J]. ACS Nano., 2022, 16 (6): 9667-9678.
|
[30] |
Li C C, Hu L, Ren X Y, Lin L, Zhan C Z, Weng Q S, Sun X Q, Yu X L. Asymmetric charge distribution of active centers in small molecule quinone cathode boosts high-energy and high-rate aqueous zinc-organic batteries[J]. Adv. Funct. Mater., 2024, 34(16): 2313241.
|
[31] |
Gao X, Wu H W, Li W J, Tian Y, Zhang Y, Wu H, Yang L, Zou G Q, Hou H S, Ji X B. H+-insertion boosted α-MnO2 for an a-queous Zn-ion battery[J]. Small, 2020, 16(5): 1905842.
|
[32] |
Zhao Y, Wang Y N, Zhao Z M, Zhao J W, Xin T, Wang N, Liu J Z. Achieving high capacity and long life of aqueous rechargeable zinc battery by using nanoporous-carbon-supported poly(1,5-naphthalenediamine) nanorods as cathode[J]. Energy Storage Mater., 2020, 28: 64-72.
|