欢迎访问《电化学(中英文)》期刊官方网站,今天是

电化学(中英文) ›› 2024, Vol. 30 ›› Issue (3): 2314003.  doi: 10.61558/2993-074X.3443

所属专题: “电催化和燃料电池”专题文章

• 综述 • 上一篇    

太阳能光(电)催化固氮研究进展

马俊博a, 林生a, 林志群b, 孙岚a,*(), 林昌健a,*()   

  1. a固体表面物理化学国家重点实验室,化学化工学院化学系,厦门大学,福建 厦门 361005
    b化学和生物分子工程系,新加坡国立大学,新加坡 117585
  • 收稿日期:2023-12-01 修回日期:2024-01-02 接受日期:2024-01-05 出版日期:2024-03-28 发布日期:2024-01-15

Recent Advances in Solar Photo(electro)catalytic Nitrogen Fixation

Ma Jun-Boa, Lin Shenga, Lin Zhiqunb, Sun Lana,*(), Lin Chang-Jiana,*()   

  1. aState Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
    bDepartment of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
  • Received:2023-12-01 Revised:2024-01-02 Accepted:2024-01-05 Published:2024-03-28 Online:2024-01-15
  • Contact: *Lan Sun, Tel: (86-592)2186862; E-mail: sunlan@xmu.edu.cn.Chang-Jian Lin, Tel: (86-592)2189354; E-mail: cjlin@xmu.edu.cn.

摘要:

氨(NH3)是一种现代社会必需的化学物质。目前,工业上合成NH3仍然采用的是Haber-Bosch过程,即以H2和N2为反应物在铁基催化剂的作用下于高温(400-600 oC)高压(20-40 Mpa)下将N2转化为NH3。然而,其效率只有10%-15%,同时造成大量的能源消耗,而且CO2排放不可避免。开发构建可持续发展的清洁友好的新能源体系是解决能源危机和环境污染问题、实现碳达峰和碳中和的关键战略。半导体光(电)催化固氮可以利用绿色无污染的太阳能制取重要的基础化工原料氨,有望代替传统的化工制氨工艺,解决其能源消耗严重和环境污染的问题。本文概述了光(电)催化固氮反应及其影响因素、光催化、电催化和光电催化固氮反应实验装置与基本特征、光(电)催化固氮反应催化剂研究进展、光电催化固氮反应机理,着重论述了半导体光催化剂、光(电)催化固氮体系以及光催化固氮机理的最新进展,并对太阳能光催化固氮技术加以评述和展望。

关键词: 太阳能, 光(电)催化, 固氮

Abstract:

Ammonia (NH3) is an essential chemical in modern society. It is currently produced in industry by the Haber-Bosch process using H2 and N2 as reactants in the presence of iron-based catalysts at high-temperature (400-600 oC) and extremely highpressure (20-40 MPa) conditions. However, its efficiency is limited to 10% to 15%. At the same time, a large amount of energy is consumed, and CO2 emission is inevitably. The development of a sustainable, clean, and environmentally friendly energy system represents a key strategy to address energy crisis and environmental pollution, ultimately aiming to achieve carbon neutrality. Within this framework, semiconductor photocatalytic nitrogen fixation leverages green and pollution-free solar energy to produce NH3 — an essential chemical raw material. This innovative process offers a sustainable alternative to the conventional chemical NH3 production method that involves tremendous energy consumption and environmental pollution. Herein, this review provides a comprehensive overview of the photo(electroc)catalytic nitrogen fixation reaction, covering influencing factor, experimental equipment of photocatalysis, electrocatalysis and photoelectrocatalysis, characteristics, and reaction mechanism. Particularly, recent advances in semiconductor photocatalyst, photo(electro)catalytic nitrogen fixation system, and photo(electro)catalytic nitrogen fixation mechanism are discussed. Future research directions in solar photo(electro)catalytic nitrogen fixation technology are also outlined.

Key words: Solar energy, Photo(electro)catalysis, Nitrogen fixation