电化学(中英文) ›› 2024, Vol. 30 ›› Issue (3): 2314003. doi: 10.61558/2993-074X.3443
所属专题: “电催化和燃料电池”专题文章
• 综述 • 上一篇
马俊博a, 林生a, 林志群b, 孙岚a,*(), 林昌健a,*()
收稿日期:
2023-12-01
修回日期:
2024-01-02
接受日期:
2024-01-05
出版日期:
2024-03-28
发布日期:
2024-01-15
Ma Jun-Boa, Lin Shenga, Lin Zhiqunb, Sun Lana,*(), Lin Chang-Jiana,*()
Received:
2023-12-01
Revised:
2024-01-02
Accepted:
2024-01-05
Published:
2024-03-28
Online:
2024-01-15
Contact:
*Lan Sun, Tel: (86-592)2186862; E-mail: 摘要:
氨(NH3)是一种现代社会必需的化学物质。目前,工业上合成NH3仍然采用的是Haber-Bosch过程,即以H2和N2为反应物在铁基催化剂的作用下于高温(400-600 oC)高压(20-40 Mpa)下将N2转化为NH3。然而,其效率只有10%-15%,同时造成大量的能源消耗,而且CO2排放不可避免。开发构建可持续发展的清洁友好的新能源体系是解决能源危机和环境污染问题、实现碳达峰和碳中和的关键战略。半导体光(电)催化固氮可以利用绿色无污染的太阳能制取重要的基础化工原料氨,有望代替传统的化工制氨工艺,解决其能源消耗严重和环境污染的问题。本文概述了光(电)催化固氮反应及其影响因素、光催化、电催化和光电催化固氮反应实验装置与基本特征、光(电)催化固氮反应催化剂研究进展、光电催化固氮反应机理,着重论述了半导体光催化剂、光(电)催化固氮体系以及光催化固氮机理的最新进展,并对太阳能光催化固氮技术加以评述和展望。
马俊博, 林生, 林志群, 孙岚, 林昌健. 太阳能光(电)催化固氮研究进展[J]. 电化学(中英文), 2024, 30(3): 2314003.
Ma Jun-Bo, Lin Sheng, Lin Zhiqun, Sun Lan, Lin Chang-Jian. Recent Advances in Solar Photo(electro)catalytic Nitrogen Fixation[J]. Journal of Electrochemistry, 2024, 30(3): 2314003.
[1] |
Rao L, Xu X, Adamo C. Theoretical investigation on the role of the central carbon atom and close protein environment on the nitrogen reduction in Mo nitrogenase[J]. ACS Catal., 2016, 6(3): 1567-1577.
doi: 10.1021/acscatal.5b02577 URL |
[2] |
Lai F, Zong W, He G, Xu Y, Huang H, Weng B, Rao D, Martens J A, Hofkens J, Parkin I P, Liu T. N2 Electroreduction to NH3 by selenium vacancy-rich ReSe2 catalysis at an abrupt interface[J]. Angew. Chem. Int. Ed., 2020, 59(32): 13320-13327.
doi: 10.1002/anie.v59.32 URL |
[3] |
Sim H Y F, Chen J R T, Koh C S L, Lee H K, Han X, Phan-Quang G C, Pang J Y, Lay C L, Pedireddy S, Phang I Y, Yeow E K L, Ling X Y. ZIF-induced d-band modification in a bimetallic nanocatalyst: Achieving over 44% efficiency in the ambient nitrogen reduction reaction[J]. Angew. Chem. Int. Ed., 2020, 59(39): 16997-17003.
doi: 10.1002/anie.v59.39 URL |
[4] |
Hochman G, Goldman A S, Felder F A, Mayer J M, Miller A J M, Holland P L, Goldman L A, Manocha P, Song Z, Aleti S. Potential economic feasibility of direct electrochemical nitrogen reduction as a route to ammonia[J]. ACS Sustain. Chem. Eng., 2020, 8(24): 8938-8948.
doi: 10.1021/acssuschemeng.0c01206 URL |
[5] |
Wang Z Q, Li C J, Deng K, Xu Y, Xue H R, Li X N, Wang L, Wang H J. Ambient nitrogen reduction to ammonia electrocatalyzed by bimetallic PdRu porous nanostructures[J]. ACS Sustain. Chem. Eng., 2018, 7(2): 2400-2405.
doi: 10.1021/acssuschemeng.8b05245 URL |
[6] |
Kitano M, Inoue Y, Yamazaki Y, Hayashi F, Kanbara S, Matsuishi S, Yokoyama T, Kim S W, Hara M, Hosono H. Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store[J]. Nat. Chem., 2012, 4(11): 934-940.
doi: 10.1038/nchem.1476 pmid: 23089869 |
[7] |
Suryanto B H R, Du H L, Wang D, Chen J, Simonov A N, Macfarlane D R. Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia[J]. Nat. Catal., 2019, 2(4): 290-296.
doi: 10.1038/s41929-019-0252-4 |
[8] |
Wang S C, Liu G, Wang L Z. Crystal facet engineering of photoelectrodes for photoelectrochemical water splitting[J]. Chem Rev, 2019, 119(8): 5192-5247.
doi: 10.1021/acs.chemrev.8b00584 pmid: 30875200 |
[9] | Li S J, Bao D, Shi M M, Wulan B R., Yan J M, Jiang Q. Amorphizing of Au nanoparticles by CeOx-RGO hybrid support towards highly efficient electrocatalyst for N2 reduction under ambient conditions[J]. Adv. Mater., 2017, 29(33): 170001. |
[10] |
Chu K, Cheng Y H, Li Q Q, Liu Y P, Tian Y. Fe-doping induced morphological changes, oxygen vacancies and Ce3+-Ce3+ pairs in CeO2 for promoting electrocatalytic nitrogen fixation[J]. J. Mater. Chem. A, 2020, 8(12): 5865-5873.
doi: 10.1039/C9TA14260F URL |
[11] |
Zhang R, Guo H R, Yang L, Wang Y, Niu Z G, Huang H, Chen H Y, Xia L, Li T S, Shi X F, Sun X P, Li B H, Liu Q. Electrocatalytic N2 fixation over hollow VO2microspheres at ambient conditions[J]. Chemelectrochem, 2019, 6(4): 1014-1018.
doi: 10.1002/celc.201801484 |
[12] |
Guo C, Ran J, Vasileff A, Qiao S Z. Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions[J]. Energy Environ. Sci., 2018, 11(1): 45-56.
doi: 10.1039/C7EE02220D URL |
[13] |
Kumar D, Pal S, Krishnamurty S. N2 activation on Al metal clusters: catalyzing role of BN-doped graphene support[J]. Phys. Chem. Chem. Phys., 2016, 18(40): 27721-27727.
doi: 10.1039/C6CP03342C URL |
[14] |
Bezdek M J, Chirik P J. Expanding boundaries: N2 cleavage and functionalization beyond early transition metals[J]. Angew. Chem. Int. Ed., 2016, 55(28): 7892-7896.
doi: 10.1002/anie.201603142 pmid: 27248360 |
[15] |
Shipman M A, Symes M D. Recent progress towards the electrosynthesis of ammonia from sustainable resources[J]. Catal. Today, 2017, 286: 57-68.
doi: 10.1016/j.cattod.2016.05.008 URL |
[16] |
Morales-Guio C G, Stern L A, Hu X. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution[J]. Chem. Soc. Rev., 2014, 43(18): 6555-6569.
doi: 10.1039/c3cs60468c pmid: 24626338 |
[17] |
Hu G, Hu C X, Zhu Z Y, Zhang L, Wang Q, Zhang H L. Construction of Au/CuO/Co3O4 tricomponent heterojunction nanotubes for enhanced photocatalytic oxygen evolution under visible light irradiation[J]. ACS Sustain. Chem. Eng., 2018, 6(7): 8801-8808.
doi: 10.1021/acssuschemeng.8b01153 URL |
[18] |
Sun Y, Sinev I, Ju W, Bergmann A, Dresp S, Kühl S, Spöri C, Schmies H, Wang H, Bernsmeier D, Paul B, Schmack R, Kraehnert R, Roldan Cuenya B, Strasser P. Efficient electrochemical hydrogen peroxide production from molecular oxygen on nitrogen-doped mesoporous carbon catalysts[J]. ACS Catal., 2018, 8(4): 2844-2856.
doi: 10.1021/acscatal.7b03464 URL |
[19] | Xu F Y, Meng K, Cheng B, Wang S Y, Xu J S, Yu J G. Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction[J]. Nat. Commun., 2020, 11(1): 4613. |
[20] |
Dong G H, Ho W K, Wang C Y. Selective photocatalytic N2 fixation dependent on g-C3N4 induced by nitrogen vacancies[J]. J. Mater. Chem. A, 2015, 3(46): 23435-23441.
doi: 10.1039/C5TA06540B URL |
[21] |
Hirakawa H, Hashimoto M, Shiraishi Y, Hirai T. Photocatalytic conversion of nitrogen to ammonia with water on surface oxygen vacancies of titanium dioxide[J]. J. Am. Chem. Soc., 2017, 139(31): 10929-10936.
doi: 10.1021/jacs.7b06634 pmid: 28712297 |
[22] |
Xiang X J, Wang Z, Shi X F, Fan M K, Sun X P. Ammonia synthesis from electrocatalytic N2 reduction under ambient conditions by Fe2O3 nanorods[J]. Chemcatchem, 2018, 10(20): 4530-4535.
doi: 10.1002/cctc.v10.20 URL |
[23] | Guo W H, Liang Z B, Zhao J L, Zhu B J, Cai K T, Zou R Q, Xu Q. Hierarchical cobalt phosphide hollow nanocages toward electrocatalytic ammonia synthesis under ambient pressure and room temperature[J]. Small Methods, 2018, 2(12): 1800204. |
[24] |
Jang Y J, Lindberg A E, Lumley M A, Choi K S. Photoelectrochemical nitrogen reduction to ammonia on cupric and cuprous oxide photocathodes[J]. ACS Energy Lett., 2020, 5(6): 1834-1839.
doi: 10.1021/acsenergylett.0c00711 URL |
[25] |
Oshikiri T, Ueno K, Misawa H. Plasmon-induced ammonia synthesis through nitrogen photofixation with visible light irradiation[J]. Angew. Chem. Int. Ed., 2014, 53(37): 9802-9805.
doi: 10.1002/anie.201404748 pmid: 25045027 |
[26] |
Furube A, Asahi T, Masuhara H, Yamashita H, Anpo M. Charge carrier dynamics of standard TiO2 catalysts revealed by femtosecond diffuse reflectance spectroscopy[J]. J. Phys. Chem. B, 1999, 103(16): 3120-3127.
doi: 10.1021/jp984162h URL |
[27] |
Alexander B D, Kulesza P J, Rutkowska I, Solarska R, Augustynski J. Metal oxide photoanodes for solar hydrogen production[J]. J. Mater. Chem., 2008, 18(20): 2298-2303.
doi: 10.1039/b718644d URL |
[28] |
Bak T, Nowotny J, Rekas M, Sorrell C C. Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects[J]. Int. J. Hydrogen Energy, 2002, 27(10): 991-1022.
doi: 10.1016/S0360-3199(02)00022-8 URL |
[29] |
Medford A J, Hatzell M C. Photon-driven nitrogen fixation: Current progress, thermodynamic considerations, and future outlook[J]. ACS Catal., 2017, 7(4): 2624-2643.
doi: 10.1021/acscatal.7b00439 URL |
[30] | Wang W K, Zhou H J, Liu Y Y, Zhang S B, Zhang Y X, Wang G Z, Zhang H M, Zhao H J. Formation of BNC coordination to stabilize the exposed active nitrogen atoms in g-C3N4 for dramatically enhanced photocatalytic ammonia synthesis performance[J]. Small, 2020, 16(13): e1906880. |
[31] |
Xiao C, Hu H, Zhang X, Macfarlane D R. Nanostructured gold/bismutite hybrid heterocatalysts for plasmon-enhanced photosynthesis of ammonia[J]. ACS Sustain. Chem. Eng., 2017, 5(11): 10858-10863.
doi: 10.1021/acssuschemeng.7b02788 URL |
[32] | Di J, Xia J, Chisholm M F, Zhong J, Chen C, Cao X, Dong F, Chi Z, Chen H, Weng Y X, Xiong J, Yang S Z, Li H, Liu Z, Dai S. Defect-tailoring mediated electron-hole separation in single-unit-cell Bi3O4Br nanosheets for boosting photocatalytic hydrogen evolution and nitrogen fixation[J]. Adv. Mater., 2019, 31(28): e1807576. |
[33] | Zhao Y, Zhao Y, Waterhouse G I N, Zheng L, Cao X, Teng F, Wu L Z, Tung C H, O'hare D, Zhang T. Layered-double-hydroxide nanosheets as efficient visible-light-driven photocatalysts for dinitrogen fixation[J]. Adv. Mater., 2017, 29(42): 1703828. |
[34] | Zhao Y, Zhao Y, Shi R, Wang B, Waterhouse G I N, Wu L Z, Tung C H, Zhang T. Tuning oxygen vacancies in ultrathin TiO2 nanosheets to boost photocatalytic nitrogen fixation up to 700 nm[J]. Adv. Mater., 2019, 31(16): e1806482. |
[35] |
Zhao Y, Hoivik N, Wang K Y. Recent advance on engineering titanium dioxide nanotubes for photochemical and photoelectrochemical water splitting[J]. Nano Energy, 2016, 30: 728-744.
doi: 10.1016/j.nanoen.2016.09.027 URL |
[36] |
Ghosh S, Kouame N A, Ramos L, Remita S, Dazzi A, Deniset-Besseau A, Beaunier P, Goubard F, Aubert P H, Remita H. Conducting polymer nanostructures for photocatalysis under visible light[J]. Nat. Mater., 2015, 14(5): 505-511.
doi: 10.1038/nmat4220 pmid: 25774954 |
[37] |
Yang J H, Wang D G, Han H X, Li C. Roles of cocatalysts in photocatalysis and photoelectrocatalysis[J]. Acc. Chem. Res., 2013, 46(8): 1900-1909.
doi: 10.1021/ar300227e URL |
[38] |
Liu S Z, Li D G, Sun H Q, Ang H M, Tade M O, Wang S B. Oxygen functional groups in graphitic carbon nitride for enhanced photocatalysis[J]. J. Colloid Interface Sci., 2016, 468: 176-182.
doi: 10.1016/j.jcis.2016.01.051 URL |
[39] |
Nguyen C C, Vu N N, Do T O. Recent advances in the development of sunlight-driven hollow structure photocatalysts and their applications[J]. J. Mater. Chem. A, 2015, 3(36): 18345-18359.
doi: 10.1039/C5TA04326C URL |
[40] |
Reza Gholipour M, Dinh C T, Beland F, Do T O. Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting[J]. Nanoscale, 2015, 7(18): 8187-8208.
doi: 10.1039/c4nr07224c pmid: 25804291 |
[41] |
Yang H Y, Zhou Y M, Wang Y Y, Hu S C, Wang B B, Liao Q, Li H F, Bao J H, Ge G Y, Jia S K. Three-dimensional flower-like phosphorus-doped g-C3N4 with a high surface area for visible-light photocatalytic hydrogen evolution[J]. J. Mater. Chem. A, 2018, 6(34): 16485-16494.
doi: 10.1039/C8TA05723K URL |
[42] |
Xie S J, Zhang Q H, Liu G D, Wang Y. Photocatalytic and photoelectrocatalytic reduction of CO2 using heterogeneous catalysts with controlled nanostructures[J]. Chem. Commun. (Camb.), 2016, 52(1): 35-59.
doi: 10.1039/C5CC07613G URL |
[43] |
Hirakawa H, Hashimoto M, Shiraishi Y, Hirai T. Photocatalytic conversion of nitrogen to ammonia with water on surface oxygen vacancies of titanium dioxide[J]. J. Am. Chem. Soc., 2017, 139(31): 10929-10936.
doi: 10.1021/jacs.7b06634 pmid: 28712297 |
[44] |
Feng X W, Chen H, Jiang F, Wang X. Enhanced visible-light photocatalytic nitrogen fixation over semicrystalline graphitic carbon nitride: Oxygen and sulfur co-doping for crystal and electronic structure modulation[J]. J. Colloid Interface Sci., 2018, 509: 298-306.
doi: 10.1016/j.jcis.2017.09.026 URL |
[45] |
Li H, Shang J, Shi J G, Zhao K, Zhang L Z. Facet-dependent solar ammonia synthesis of BiOCl nanosheets via a proton-assisted electron transfer pathway[J]. Nanoscale, 2016, 8(4): 1986-1993.
doi: 10.1039/c5nr07380d pmid: 26701815 |
[46] |
Luo J Y, Bai X X, Li Q, Yu X, Li C Y, Wang Z N, Wu W W, Liang Y P, Zhao Z H, Liu H. Band structure engineering of bioinspired Fe doped SrMoO4 for enhanced photocatalytic nitrogen reduction performance[J]. Nano Energy, 2019, 66: 104187.
doi: 10.1016/j.nanoen.2019.104187 URL |
[47] |
Hu S Z, Chen X, Li Q, Li F Y, Fan Z P, Wang H, Wang Y J, Zheng B H, Wu G. Fe3+ doping promoted N2 photofixation ability of honeycombed graphitic carbon nitride: The experimental and density functional theory simulation analysis[J]. Appl. Catal. B: Environ., 2017, 201: 58-69.
doi: 10.1016/j.apcatb.2016.08.002 URL |
[48] |
Saadatjou N, Jafari A, Sahebdelfar S. Ruthenium nanocatalysts for ammonia synthesis: A review[J]. Chem. Eng. Commun., 2014, 202(4): 420-448.
doi: 10.1080/00986445.2014.923995 URL |
[49] |
Ling C Y, Niu X H, Li Q, Du A J, Wang J L. Metal-free single atom catalyst for N2 fixation driven by visible light[J]. J. Am. Chem. Soc., 2018, 140(43): 14161-14168.
doi: 10.1021/jacs.8b07472 URL |
[50] | Simpson F B, Burris R H. A nitrogen pressure of 50 atmospheres does not prevent evolution of hydrogen by nitrogenase[J]. Science, 1984, 224 (4653): 1095. |
[51] | Indra A, Menezes P W, Kailasam K, Hollmann D, Schroder M, Thomas A, Bruckner A, Driess M. Nickel as a co-catalyst for photocatalytic hydrogen evolution on graphitic-carbon nitride (sg-CN): what is the nature of the active species?[J]. Chem. Commun. (Camb.), 2016, 52(1): 104-107. |
[52] |
Wang D, Liu Z P, Yang W M. Revealing the size effect of platinum cocatalyst for photocatalytic hydrogen evolution on TiO2 support: A DFT study[J]. ACS Catal., 2018, 8(8): 7270-7278.
doi: 10.1021/acscatal.8b01886 URL |
[53] |
Kong C, Li Z, Lu G X. The dual functional roles of Ru as co-catalyst and stabilizer of dye for photocatalytic hydrogen evolution[J]. Int. J. Hydrogen Energy, 2015, 40 (17): 5824-5830.
doi: 10.1016/j.ijhydene.2015.03.014 URL |
[54] |
Ranjit K T, Varadarajan T K, Viswanathan B. Photocatalytic reduction of dinitrogen to ammonia over noble-metal-loaded TiO2[J]. J. Photochem. Photobiol. A: Chem., 1996, 96(1): 181-185.
doi: 10.1016/1010-6030(95)04290-3 URL |
[55] |
Abghoui Y, Garden A L, Howalt J G, Vegge T, Skúlason E. Electroreduction of N2 to ammonia at ambient conditions on mononitrides of Zr, Nb, Cr, and V: A DFT guide for experiments[J]. ACS Catal., 2015, 6(2): 635-646.
doi: 10.1021/acscatal.5b01918 URL |
[56] |
Shi A Y, Li H H, Yin S, Hou Z L, Rong J Y, Zhang J C, Wang Y H. Photocatalytic NH3 versus H2 evolution over g-C3N4/CsxWO3: O2 and methanol tipping the scale[J]. Appl. Catal. B: Environ., 2018, 235: 197-206.
doi: 10.1016/j.apcatb.2018.04.081 URL |
[57] |
Lee J, Park H, Choi W. Selective Photocatalytic oxidation of NH3 to N2 on platinized TiO2 in water[J]. Environ. Sci. Technol., 2002, 36(24): 5462-5468.
doi: 10.1021/es025930s URL |
[58] |
Li R. Photocatalytic nitrogen fixation: An attractive approach for artificial photocatalysis[J]. Chin. J. Catal., 2018, 39(7): 1180-1188.
doi: 10.1016/S1872-2067(18)63104-3 |
[59] |
Schrauzer G N, Guth T D. Photolysis of water and photoreduction of nitrogen on titanium dioxide[J]. J. Am. Chem. Soc., 1977, 99(22): 7189-7193.
doi: 10.1021/ja00464a015 URL |
[60] |
Li Y H, Chen X, Zhang M J, Zhu Y M, Ren W J, Mei Z W, Gu M, Pan F. Oxygen vacancy-rich MoO3-x nanobelts for photocatalytic N2 reduction to NH3 in pure water[J]. Catal. Sci. Technol., 2019, 9(3): 803-810.
doi: 10.1039/C8CY02357C URL |
[61] |
Sun S M, Li X M, Wang W Z, Zhang L, Sun X. Photocatalytic robust solar energy reduction of dinitrogen to ammonia on ultrathin MoS2[J]. Appl. Catal. B: Environ., 2017, 200: 323-329.
doi: 10.1016/j.apcatb.2016.07.025 URL |
[62] |
Zhang G, Ji Q H, Zhang K, Chen Y, Li Z H, Liu H J, Li J H, Qu J H. Triggering surface oxygen vacancies on atomic layered molybdenum dioxide for a low energy consumption path toward nitrogen fixation[J]. Nano Energy, 2019, 59: 10-16.
doi: 10.1016/j.nanoen.2019.02.028 |
[63] |
Xiao C L, Wang H P, Zhang L, Sun S M, Wang W Z. Enhanced photocatalytic nitrogen fixation on MoO2/BiOCl composite[J]. Chemcatchem, 2019, 11(24): 6467-6472.
doi: 10.1002/cctc.201901635 |
[64] |
Mou H Y, Wang J F, Yu D K, Zhang D L, Chen W J, Wang Y Q, Wang D B, Mu T C. Fabricating amorphous g-C3N4/ZrO2 photocatalysts by one-step pyrolysis for solar-driven ambient ammonia synthesis[J]. ACS Appl. Mater. Interfaces, 2019, 11 (47): 44360-44365.
doi: 10.1021/acsami.9b16432 URL |
[65] | Ithisuphalap K, Zhang H G, Guo L, Yang Q G, Yang H P, Wu G. Photocatalysis and photoelectrocatalysis methods of nitrogen reduction for sustainable ammonia synthesis[J]. Small Methods, 2018, 3(6): 1800352. |
[66] |
Van Tamelen E E, Akermark B. Electrolytic reduction of molecular nitrogen[J]. J. Am. Chem. Soc., 1968, 90(16): 4492-4493.
doi: 10.1021/ja01018a074 URL |
[67] |
Wang J, Chen S L, Li Z J, Li G K, Liu X. Recent advances in electrochemical synthesis of ammonia through nitrogen reduction under ambient conditions[J]. Chemelectrochem, 2020, 7(5): 1067-1079.
doi: 10.1002/celc.v7.5 URL |
[68] |
Marnellos G, Stoukides M. Ammonia synthesis at atmospheric pressure[J]. Science, 1998, 282(5386): 98-100.
pmid: 9756486 |
[69] |
Licht S, Cui B, Wang B, Li F F, Lau J, Liu S. Ammonia synthesis by N2 and steam electrolysis in molten hydroxide suspensions of nanoscale Fe2O3[J]. Science, 2014, 345(6197): 637-640.
doi: 10.1126/science.1254234 URL |
[70] |
Manjunatha R, Schechter A. Electrochemical synthesis of ammonia using ruthenium-platinum alloy at ambient pressure and low temperature[J]. Electrochem. Commun., 2018, 90: 96-100.
doi: 10.1016/j.elecom.2018.04.008 URL |
[71] |
Liu G Q, Cui Z Q, Han M M, Zhang S B, Zhao C J, Chen C, Wang G Z, Zhang H M. Ambient electrosynthesis of ammonia on a core-shell-structured Au@CeO2 catalyst: Contribution of oxygen vacancies in CeO2[J]. Chem.-Eur. J., 2019, 25 (23): 5904-5911.
doi: 10.1002/chem.v25.23 URL |
[72] | Wang J, Yu L, Hu L, Chen G, Xin H L, Feng X F. Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential[J]. Nat. Commun., 2018, 9(1): 1795. |
[73] |
Zhang L L, Cong M Y, Ding X, Jin Y, Xu F F, Wang Y, Chen L, Zhang L X. A janus Fe-SnO2 catalyst that enables bifunctional electrocatalytic nitrogen fixation[J]. Angew. Chem. Int. Ed, 2020, 59(27): 10888-10893.
doi: 10.1002/anie.v59.27 URL |
[74] | Kim K, Yoo C Y, Kim J N, Yoon H C, Han J I. Electrochemical synthesis of ammonia from water and nitrogen in ethylenediamine under ambient temperature and pressure[J]. J. Electrochem. Soc., 2016, 163(14): F1523-F1526. |
[75] |
Li C, Wang T, Zhao Z J, Yang W, Li J F, Li A, Yang Z, Ozin G A, Gong J. Promoted fixation of molecular nitrogen with surface oxygen vacancies on plasmon-enhanced TiO2 photoelectrodes[J]. Angew. Chem. Int. Ed., 2018, 57(19): 5278-5282.
doi: 10.1002/anie.v57.19 URL |
[76] |
Zhu D, Zhang L, Ruther R E, Hamers R J. Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction[J]. Nat. Mater., 2013, 12(9): 836-841.
doi: 10.1038/nmat3696 pmid: 23812128 |
[77] |
Li M X, Lu Q J, Liu M L, Yin P, Wu C Y, Li H T, Zhang Y Y, Yao S Z. Photoinduced charge separation via the double-electron transfer mechanism in nitrogen vacancies g-C3N5/BiOBr for the photoelectrochemical nitrogen reduction[J]. ACS Appl. Mater. Interfaces, 2020, 12(34): 38266-38274.
doi: 10.1021/acsami.0c11894 URL |
[78] | Li M Q C O, Huang H, Low J X, Gao C, Long R., Xiong Y J. Recent progress on electrocatalyst and photocatalyst design for nitrogen reduction[J]. Small Methods, 2018, 3(6): 1673-1674. |
[79] |
Wang Q R, Guo J P, Chen P. Recent progress towards mild-condition ammonia synthesis[J]. J. Energy Chem., 2019, 36: 25-36.
doi: 10.1016/j.jechem.2019.01.027 |
[80] |
Bai Y J, Bai H Y, Qu K G, Wang F G, Guan P, Xu D B, Fan W Q, Shi W D. In-situ approach to fabricate BiOI photocathode with oxygen vacancies: Understanding the N2 reduced behavior in photoelectrochemical system[J]. Chem. Eng. J., 2019, 362: 349-356.
doi: 10.1016/j.cej.2019.01.051 URL |
[81] |
Ye L Q, Han C Q, Ma Z Y, Leng Y M, Li J, Ji X X, Bi D Q, Xie H Q, Huang Z X. Ni2P loading on Cd0.5Zn0.5S solid solution for exceptional photocatalytic nitrogen fixation under visible light[J]. Chem. Eng. J., 2017, 307: 311-318.
doi: 10.1016/j.cej.2016.08.102 URL |
[82] |
Ye W, Arif M, Fang X Y, Mushtaq M A, Chen X B, Yan D P. Efficient photoelectrochemical route for the ambient reduction of N2 to NH3 based on nanojunctions assembled from MoS2 nanosheets and TiO2[J]. ACS Appl. Mater. Inter., 2019, 11(32): 28809-28817.
doi: 10.1021/acsami.9b06596 URL |
[83] | Lee H K, Koh C S L, Lee Y H, Liu C, Phang I Y, Han X, Tsung C K, Ling X Y. Favoring the unfavored: Selective electrochemical nitrogen fixation using a reticular chemistry approach[J]. Sci. Adv., 2018, 4(3): eaar3208. |
[84] | Wu Z X, Zhao Y, Jin W, Jia B H, Wang J, Ma T Y. Recent progress of vacancy engineering for electrochemical energy conversion related applications[J]. Adv. Funct. Mater., 2021, 31(9): 2009070. |
[85] |
Pan J, Jiang S P. Synthesis of nitrogen doped faceted titanium dioxide in pure brookite phase with enhanced visible light photoactivity[J]. J. Colloid Interface Sci., 2016, 469: 25-30.
doi: 10.1016/j.jcis.2016.02.013 URL |
[86] | Gurylev V, Mishra M, Su C Y, Perng T P. Enabling higher photoelectrochemical efficiency of TiO2 via controlled formation of a disordered shell: an alternative to the hydrogenation process[J]. Chem. Commun. (Camb.), 2016, 52(48): 7604-7607. |
[87] |
Vu M H, Sakar M, Nguyen C C, Do T O. Chemically bonded Ni cocatalyst onto the S doped g-C3N4 nanosheets and their synergistic enhancement in H2 production under sunlight irradiation[J]. ACS Sustain. Chem. Eng., 2018, 6(3): 4194-4203.
doi: 10.1021/acssuschemeng.7b04598 URL |
[88] | Xiong J, Di J, Xia J X, Zhu W S, Li H M. Surface defect engineering in 2D nanomaterials for photocatalysis[J]. Adv. Funct. Mater., 2018, 28(39): 1801983. |
[89] |
Li H, Shang J, Ai Z H, Zhang L Z. Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed {001} facets[J]. J. Am. Chem. Soc., 2015, 137(19): 6393-6399.
doi: 10.1021/jacs.5b03105 pmid: 25874655 |
[90] | Wang S Y, Hai X, Ding X, Chang K, Xiang Y G, Meng X G, Yang Z X, Chen H, Ye J H. Light-switchable oxygen vacancies in ultrafine Bi5O7Br nanotubes for boosting solar-driven nitrogen fixation in pure water[J]. Adv. Mater., 2017, 29(31): 1701774. |
[91] |
Zhang J Y, Yue L, Zeng Z H, Zhao C R, Fang L J, Hu X, Lin H J, Zhao L H, He Y M. Preparation of NaNbO3 microcube with abundant oxygen vacancies and its high photocatalytic N2 fixation activity in the help of Pt nanoparticles[J]. J. Colloid Interface Sci., 2023, 636: 480-491.
doi: 10.1016/j.jcis.2023.01.049 URL |
[92] |
Lin S, Chen Y H, Fu J J, Sun L, Jiang Q R, Li J F, Cheng J, Lin C J, Tian Z Q. Photoelectrocatalytic nitrogen fixation with Vo-BiOBr/TiO2 heterostructured photoelectrode as photocatalyst[J]. Int. J. Hydrogen Energy, 2022, 47: 41553-41563.
doi: 10.1016/j.ijhydene.2022.02.026 URL |
[93] |
Zhu M S, Zhai C Y, Sun M J, HuY F, Yan B, Du Y K. Ultrathin graphitic C3N4 nanosheet as a promising visible-light-activated support for boosting photoelectrocatalytic methanol oxidation[J]. Appl. Catal. B Environ, 2017, 203: 108-115.
doi: 10.1016/j.apcatb.2016.10.012 URL |
[94] |
Zhang X D, Yan J, Zheng F Y, Zhao J, Lee L Y S. Designing charge transfer route at the interface between WP nanoparticle and g-C3N4 for highly enhanced photocatalytic CO2 reduction reaction[J]. Appl. Catal. B: Environ., 2021, 286: 119879.
doi: 10.1016/j.apcatb.2021.119879 URL |
[95] |
Xie F Y, Dong G F, Wu K C, Li Y F, Wei M D, Du S W. In situ synthesis of g-C3N4 by glass-assisted annealing route to boost the efficiency of perovskite solar cells[J]. J. Colloid Interface Sci., 2021, 591: 326-333.
doi: 10.1016/j.jcis.2021.02.028 URL |
[96] |
Li G S, Lian Z C, Wang W C, Zhang D Q, Li H X. Nanotube-confinement induced size-controllable g-C3N4 quantum dots modified single-crystalline TiO2 nanotube arrays for stable synergetic photoelectrocatalysis[J]. Nano Energy, 2016, 19: 446-454.
doi: 10.1016/j.nanoen.2015.10.011 URL |
[97] |
Mohamed H S H, Wu L, Li C F, Hu Z Y, Liu J, Deng Z, Chen L H, Li Y., Su B L. In-situ growing mesoporous CuO/O-doped g-C3N4 nanospheres for highly enhanced lithium storage[J]. ACS Appl. Mater. Interfaces, 2019, 11(36): 32957-32968.
doi: 10.1021/acsami.9b10171 URL |
[98] |
Chen J J, Mao Z Y, Zhang L X, Wang D J, Xu R, Bie L J, Fahlman B D. Nitrogen-deficient graphitic carbon nitride with enhanced performance for lithium ion battery anodes[J]. ACS Nano, 2017, 11(12): 12650-12657.
doi: 10.1021/acsnano.7b07116 pmid: 29224334 |
[99] |
Zeng D, Zhou T, Ong W J, Wu M, Duan X, Xu W, Chen Y, Zhu Y A, Peng D. L. Sub-5 nm ultra-fine FeP nanodots as efficient co-catalysts modified porous g-C3N4 for precious-metal-free photocatalytic hydrogen evolution under visible light[J]. ACS Appl. Mater. Interfaces, 2019, 11(6): 5651-5660.
doi: 10.1021/acsami.8b20958 URL |
[100] |
You Y, Wang S B, Xiao K, Ma T Y, Zhang Y H, Huang H W. Z-scheme g-C3N4/Bi4NbO8Cl heterojunction for enhanced photocatalytic hydrogen production[J]. ACS Sustain. Chem. Eng., 2018, 6(12): 16219-16227.
doi: 10.1021/acssuschemeng.8b03075 URL |
[101] |
Dai J Y, Song J B, Qiu Y, Wei J J, Hong Z Z, Li L, Yang H H. Gold nanoparticle-gecorated g-C3N4 nanosheets for controlled generation of reactive oxygen species upon 670 nm laser illumination[J]. ACS Appl. Mater. Interfaces, 2019, 11(11): 10589-10596.
doi: 10.1021/acsami.9b01307 URL |
[102] |
Li Q Y, He L Z, Sun C H, Zhang X W. Computational study of MoN2 monolayer as electrochemical catalysts for nitrogen reduction[J]. J. Phys. Chem. C, 2017, 121(49): 27563-27568.
doi: 10.1021/acs.jpcc.7b10522 URL |
[103] |
Abghoui Y, Skúlason E. Computational predictions of catalytic activity of zincblende (110) surfaces of metal nitrides for electrochemical ammonia synthesis[J]. J. Phys. Chem. C, 2017, 121(11): 6141-6151.
doi: 10.1021/acs.jpcc.7b00196 URL |
[104] |
Abghoui Y, Garden A L, Hlynsson V F, Bjorgvinsdottir S, Olafsdottir H, Skulason E. Enabling electrochemical reduction of nitrogen to ammonia at ambient conditions through rational catalyst design[J]. Phys. Chem. Chem. Phys., 2015, 17(7): 4909-4918.
doi: 10.1039/c4cp04838e pmid: 25446373 |
[105] |
Lv C, Qian Y M, Yan C S, Ding Y, Liu Y Y, Chen G, Yu G H. Defect engineering metal-free polymeric carbon nitride electrocatalyst for effective nitrogen fixation under ambient conditions[J]. Angew. Chem. Int. Ed., 2018, 57 (32): 10246-10250.
doi: 10.1002/anie.201806386 pmid: 29947048 |
[106] | Spatzal T, Aksoyoglu M, Zhang L, Andrade S L, Schleicher E, Weber S, Rees D C, Einsle O. Evidence for interstitial carbon in nitrogenase FeMo cofactor[J]. Science, 2011, 334(6058): 940. |
[107] |
Lee C C, Hu Y, Ribbe M W. ATP-independent formation of hydrocarbons catalyzed by isolated nitrogenase cofactors[J]. Angew. Chem. Int. Ed., 2012, 51(8): 1947-1949.
doi: 10.1002/anie.201108916 pmid: 22253035 |
[108] |
Hoffman B M, Lukoyanov D, Yang Z Y, Dean D R, Seefeldt L C. Mechanism of nitrogen fixation by nitrogenase: The next stage[J]. Chem Rev, 2014, 114(8): 4041-4062.
doi: 10.1021/cr400641x pmid: 24467365 |
[109] |
Banerjee A, Yuhas B D, Margulies E A, Zhang Y, Shim Y, Wasielewski M R., Kanatzidis M G. Photochemical nitrogen conversion to ammonia in ambient conditions with FeMoS-chalcogels[J]. J. Am. Chem. Soc., 2015, 137(5): 2030-2034.
doi: 10.1021/ja512491v pmid: 25590239 |
[110] | Ohki Y, Uchida K, Tada M, Cramer R E, Ogura T, Ohta T. N2 activation on a molybdenum-titanium-sulfur cluster[J]. Nat. Commun., 2018, 9(1): 3200. |
[111] | Zhang L, Ji X Q, Ren X, Ma Y J, Shi X F, Tian Z Q, Asiri A M, Chen L, Tang B, Sun X P. Electrochemical ammonia synthesis via nitrogen reduction reaction on a MoS2 catalyst: Theoretical and experimental studies[J]. Adv. Mater., 2018, 30(28): e1800191. |
[112] | Zhang G H, Yuan X X, Xie B, Meng Y, Ni Z M, Xia S J. S vacancies act as a bridge to peomote electron injection from Z-scheme heterojunction to nitrogen molecule for photocatalytic ammonia synthesis[J]. Cheml. Eng. J., 2022, 433(3): 133670. |
[113] | Shi Z S, Yang W Q, Gu Y T, Liao T, Sun Z Q. Metal-nitrogen-doped carbon materials as highly efficient catalysts: Progress and rational design[J]. Adv. Sci., 2016, 19: 446-454. |
[114] |
Wang S H, Zhan J W, Chen K, Ali A, Zeng L H, Zhao H, Hu W L, Zhu L X, Xu X L. Potassium-doped g-C3N4 achieving efficient visible-light-driven CO2 reduction[J]. ACS Sustain. Chem. Eng., 2020, 8(22): 8214-8222.
doi: 10.1021/acssuschemeng.0c01151 URL |
[115] |
Zhang Z R, Liu C X, Feng C, Gao P F, Liu Y L, Ren F N, Zhu Y F, Cao C, Yan W S, Si R, Zhou S M, Zeng J. Breaking the local symmetry of LiCoO2 via atomic doping for efficient oxygen evolution[J]. Nano Lett., 2019, 19(12): 8774-8779.
doi: 10.1021/acs.nanolett.9b03523 URL |
[116] |
Skulason E, Bligaard T, Gudmundsdottir S, Studt F, Rossmeisl J, Abild-Pedersen F, Vegge T, Jonsson H, Norskov J K. A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction[J]. Phys. Chem. Chem. Phys., 2012, 14(3): 1235-1245.
doi: 10.1039/C1CP22271F URL |
[117] |
Zhao W R, Zhang J, Zhu X, Zhang M, Tang J, Tan M, Wang Y. Enhanced nitrogen photofixation on Fe-doped TiO2 with highly exposed (101) facets in the presence of ethanol as scavenger[J]. Appl. Catal. B: Environ., 2014, 144: 468-477.
doi: 10.1016/j.apcatb.2013.07.047 URL |
[118] |
Hu S Z, Chen X, Li Q, Li F Y, Fan Z P, Wang H, Wang Y J, Zheng B H, Wu G. Fe3+ doping promoted N2 photofixation ability of honeycombed graphitic carbon nitride: the experimental and density functional theory simulation analysis[J]. Appl. Catal. B: Environ., 2017, 201: 58-69.
doi: 10.1016/j.apcatb.2016.08.002 URL |
[119] |
Li X F, Li Q K, Cheng J, Liu L, Yan Q, Wu Y, Zhang X H, Wang Z Y, Qiu Q, Luo Y. Conversion of dinitrogen to ammonia by FeN3-embedded graphene[J]. J. Am. Chem. Soc., 2016, 138(28): 8706-8709.
doi: 10.1021/jacs.6b04778 URL |
[120] | Hu S Z, Chen X, Li Q, Li F Y, Fan Z P, Wang H, Wang Y J, Zheng B H, Wu G. Fe3+ doping promoted N2 photofixation ability of honeycombed graphitic carbon nitride: The experimental and density functional theory simulation analysis[J]. Appl. Catal. B: Environ., 2017(201) 58-69. |
[121] |
Zhang N, Jalil A, Wu D X, Chen S M, Liu Y F, Gao C, Ye W, Qi Z M, Ju H X, Wang C M, Wu X J, Song L, Zhu J F, Xiong Y J. Refining defect states in W18O49 by Mo doping: A strategy for tuning N2 activation towards solar-driven nitrogen fixation[J]. J. Am. Chem. Soc., 2018, 140(30): 9434-9443.
doi: 10.1021/jacs.8b02076 pmid: 29975522 |
[122] |
Wang J F, Zhao C R, Yuan S D, Li X J, Zhang J Y, Hu X, Lin H J, Wu Y, He Y M. One-step fabrication of Cu-doped Bi2MoO6 microflower for enhancing performance in photocatalytic nitrogen fixation[J]. J. Colloid Interface Sci., 2023, 638: 427-438.
doi: 10.1016/j.jcis.2023.02.005 URL |
[123] |
Wang J F, Guan L F, Yuan S D, Zhang J Y, Zhao C R, Hu X, Teng B T, Wu Y, He Y M. Greatly boosted photocatalytic N2-to-NH3 conversion by bismuth doping in CdMoO4: Band structure engineering and N2adsorption modification[J]. Sep. Purif. Technol., 2023, 314: 123554.
doi: 10.1016/j.seppur.2023.123554 URL |
[124] |
Luo Q, Chen L Y, Duan B H, Gu Z Z, Liu J, Xu M L, Duan C Y. Porous N-doped graphitic carbon assembled one-dimensional hollow structures as high performance electrocatalysts for ORR[J]. RSC Adv., 2016, 6(15): 12467-12471.
doi: 10.1039/C5RA26386G URL |
[125] |
Xu F C, Wu F F, Zhu K L, Fang Z P, Jia D M, Wang Y K, Jia G, Low J X, Ye W, Sun Z T. Boron doping and high curvature in Bi nanorolls for promoting photoelectrochemical nitrogen fixation[J]. Appl. Catal. B: Environ., 2021, 284: 119689.
doi: 10.1016/j.apcatb.2020.119689 URL |
[126] |
Yu X M, Han P, Wei Z X, Huang L S, Gu Z X, Peng S J, Ma J M, Zheng G F. Boron-doped graphene for electrocatalytic N2 Reduction[J]. Joule, 2018, 2 (8): 1610-1622.
doi: 10.1016/j.joule.2018.06.007 URL |
[127] | Chen C, Yan D F, Wang Y, Zhou Y Y, Zou Y Q, Li Y F, Wang S Y. BN pairs enriched defective carbon nanosheets for ammonia synthesis with high efficiency[J]. Small, 2019, 15(7): e1805029. |
[128] |
Li H, Shang J, Shi J G, Zhao K, Zhang L Z. Facet-dependent solar ammonia synthesis of BiOCl nanosheets via a proton-assisted electron transfer pathway[J]. Nanoscale, 2016, 8 (4): 1986-1993.
doi: 10.1039/c5nr07380d pmid: 26701815 |
[129] |
Ran J R, Zhang J, Yu J G, Jaroniec M, Qiao S Z. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting[J]. Chem. Soc. Rev., 2014, 43(22): 7787-7812.
doi: 10.1039/c3cs60425j pmid: 24429542 |
[130] |
Ranjit K T, Varadarajan T K, Viswanathan B. Photocatalytic reduction of dinitrogen to ammonia over noble-metal-loaded TiO2[J]. J. Photochem. Photobiol. A: Chem., 1996, 96(1): 181-185.
doi: 10.1016/1010-6030(95)04290-3 URL |
[131] |
Luo M H, Lu P, Yao W F, Huang C P, Xu Q J, Wu Q, Kuwahara Y, Yamashita H. Shape and composition effects on photocatalytic hydrogen production for Pt-Pd alloy cocatalysts[J]. ACS Appl. Mater. Interfaces, 2016, 8(32): 20667-20674.
doi: 10.1021/acsami.6b04388 URL |
[132] |
Qiu P X, Xu C M, Zhou N, Chen H, Jiang F. Metal-free black phosphorus nanosheets-decorated graphitic carbon nitride nanosheets with C-P bonds for excellent photocatalytic nitrogen fixation[J]. Appl. Catal. B: Environ., 2018, 221: 27-35.
doi: 10.1016/j.apcatb.2017.09.010 URL |
[133] |
Mao C L, Yu L H, Li J, Zhao J C, Zhang L Z. Energy-confined solar thermal ammonia synthesis with K/Ru/TiO2-xHx[J]. Appl. Catal. B: Environ., 2018, 224: 612-620.
doi: 10.1016/j.apcatb.2017.11.010 URL |
[134] |
Zeng H, Terazono S, Tanuma T. A novel catalyst for ammonia synthesis at ambient temperature and pressure: Visible light responsive photocatalyst using localized surface plasmon resonance[J]. Catal. Commun., 2015, 59: 40-44.
doi: 10.1016/j.catcom.2014.09.034 URL |
[135] |
Qiu P X, Xu C M, Zhou N, Chen H, Jiang F. Metal-free black phosphorus nanosheets-decorated graphitic carbon nitride nanosheets with C-P bonds for excellent photocatalytic nitrogen fixation[J]. Appl. Catal. B: Environ., 2018, 221: 27-35.
doi: 10.1016/j.apcatb.2017.09.010 URL |
[136] |
Wang H B, Li H, Zhang M L, Song Y X, Huang J, Huang H, Shao M W, Liu Y, Kang Z H. Carbon dots enhance the nitrogen fixation activity of azotobacter chroococcum[J]. ACS Appl. Mater. Interfaces, 2018, 10 (19): 16308-16314.
doi: 10.1021/acsami.8b03758 URL |
[137] |
Li X M, Wang W Z, Jiang D, Sun S M, Zhang L, Sun X. Efficient solar-driven nitrogen fixation over carbon-tungstic-acid hybrids[J]. Chem. Eur. J., 2016, 22 (39): 13819-13822.
doi: 10.1002/chem.v22.39 URL |
[138] |
Oshikiri T, Ueno K, Misawa H. Selective dinitrogen conversion to ammonia using water and visible light through plasmon-induced charge separation[J]. Angew. Chem. Int. Ed., 2016, 55(12): 3942-3946.
doi: 10.1002/anie.201511189 pmid: 26890286 |
[139] |
Yang J H, Guo Y Z, Jiang R B, Qin F, Zhang H, Lu W Z, Wang J F, Yu J C. High-efficiency "working-in-tandem" nitrogen photofixation achieved by assembling plasmonic gold nanocrystals on ultrathin titania nanosheets[J]. J. Am. Chem. Soc., 2018, 140(27): 8497-8508.
doi: 10.1021/jacs.8b03537 pmid: 29905477 |
[140] | Vu M H, Sakar M, Hassanzadeh-Tabrizi S A, Do T O. Photo(electro)catalytic nitrogen fixation: Problems and possibilities[J]. Adv. Mater. Interfaces, 2019, 6(12): 1900091. |
[141] |
Bharath G, Liu C, Banat F, Kumar A, Hai A B, Nadda A K, Gupta V K, Abu Haijia M, Balamurugan. Plasmonic Au nanoparticles anchored 2D WS2@RGO for high-performance photoelectrochemical nitrogen reduction to ammonia[J]. Chem. Eng. J, 2023, 465: 143040.
doi: 10.1016/j.cej.2023.143040 URL |
[142] |
Lin S, Ma J B, Fu J J, Sun L, Zhang H, Cheng J, Li J F. Constructing Vo-TiO2/Ag/TiO2 heterojunction for efficient photoelectrochemical nitrogen reduction to ammonia[J]. J. Phys. Chem. C, 2023, 127: 1345-1354.
doi: 10.1021/acs.jpcc.2c08279 URL |
[143] | Mei Q F, Zhang F Y, Wang N, Lu W S, Su X T, Wang W, Wu R L. Photocatalysts: Z-scheme heterojunction constructed with titanium dioxide[J]. Chin. J. Inorg. Chem., 2019, 35(8): 1321-1339. |
[144] |
Cao S H, Zhou N, Gao F H, Chen H, Jiang F. All-solid-state Z-scheme 3,4-dihydroxybenzaldehyde-functionalized Ga2O3/graphitic carbon nitride photocatalyst with aromatic rings as electron mediators for visible-light photocatalytic nitrogen fixation[J]. Appl. Catal. B: Environ., 2017, 218: 600-610.
doi: 10.1016/j.apcatb.2017.07.013 URL |
[145] |
Zhao C R, Li X J, Yue L, Yuan S D, Ren X J, Zeng Z H, Hu X, Wu Y, He Y M. One-step preparation of novel Bi-Bi2O3/CdWO4 Z-scheme heterojunctions with enhanced performance in photocatalytic NH3 synthesis[J]. J. Alloy Compd., 2023, 968: 171956.
doi: 10.1016/j.jallcom.2023.171956 URL |
[146] |
Yan Z H, Ji M X, Xia J X, Zhu H Y. Recent advanced materials for electrochemical and photoelectrochemical synthesis of ammonia from dinitrogen: One step closer to a sustainable energy future[J]. Adv. Energy Mater., 2019, 10(11): 1902020.
doi: 10.1002/aenm.v10.11 URL |
[1] | 王伟国, 白天, 薛高飞, 叶美丹. CsPbIBr2钙钛矿太阳能电池中通过氧气诱导Spiro-OMeTAD快速氧化[J]. 电化学(中英文), 2021, 27(2): 216-226. |
[2] | 吴 芝, 孙 岚, 林昌健. 太阳能光催化制氢研究进展[J]. 电化学(中英文), 2019, 25(5): 529-552. |
[3] | 张 囡,叶美丹, 温晓茹, 林昌健. 通过磁控溅射金属钛生长金红石型二氧化钛纳米片阵列应用于钙钛矿太阳能电池[J]. 电化学(中英文), 2017, 23(2): 226-237. |
[4] | 刘晓东,李永舫. 阴极界面修饰层改善平面p-i-n型钙钛矿太阳能电池的光伏性能[J]. 电化学(中英文), 2016, 22(4): 315-331. |
[5] | 洪晓丹,许子颉,张发荫,李宇鹏,叶美丹,林昌健,郭文熹. 三种CuS对电极的制备及其对量子点敏化太阳能电池光电性能的影响[J]. 电化学(中英文), 2016, 22(4): 404-411. |
[6] | 许子颉,张发荫,洪晓丹,郭文熹,刘向阳,林昌健. 基于网状铂电极的新型柔性染料敏化太阳能电池[J]. 电化学(中英文), 2016, 22(4): 397-403. |
[7] | 刘双双,鲁建峰,王鸣魁. 卟啉及其光电化学研究进展[J]. 电化学(中英文), 2016, 22(4): 340-355. |
[8] | 李亚峰,孙晴晴,魏明灯. 金属有机框架在染料敏化太阳能电池中的应用[J]. 电化学(中英文), 2016, 22(4): 332-339. |
[9] | 窦衍叶, 晏南富, 李国然, 高学平. 碳纳米管负载Ni2P作为染料敏化太阳能电池对电极的性能研究[J]. 电化学(中英文), 2012, 18(4): 301-305. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||