欢迎访问《电化学(中英文)》期刊官方网站,今天是

电化学(中英文) ›› 2023, Vol. 29 ›› Issue (9): 2217009.  doi: 10.13208/j.electrochem.2217009

所属专题: “下一代二次电池”专题文章

• 展望 • 上一篇    

面向高性能锂-硫二次电池应用的非对称电极-电解质界面

丑佳a,b, 王雅慧a,b, 王文鹏a, 辛森a,b,*(), 郭玉国a,b,*()   

  1. a中国科学院化学研究所,北京 100190
    b中国科学院大学,北京 100049
  • 收稿日期:2023-04-10 修回日期:2023-06-11 接受日期:2023-06-29 出版日期:2023-09-28 发布日期:2023-06-30

Asymmetric Electrode-Electrolyte Interfaces for High-Performance Rechargeable Lithium-Sulfur Batteries

Jia Choua,b, Ya-Hui Wanga,b, Wen-Peng Wanga, Sen Xina,b,*(), Yu-Guo Guoa,b,*()   

  1. aCAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
    bUniversity of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2023-04-10 Revised:2023-06-11 Accepted:2023-06-29 Published:2023-09-28 Online:2023-06-30
  • Contact: *Tel: (86-10)62568158, E-mail: xinsen08@iccas.ac.cn; Tel: (86-10)82617069, E-mail: ygguo@iccas.ac.cn

摘要:

锂-硫电池具有高的理论电芯比能量和低成本,是极具应用前景的下一代电化学储能技术,已被广泛研究。实用化锂-硫电池技术目前面临的挑战主要包括正极侧电活性硫物种在充放电过程中的不可逆损失,负极侧枝晶形核生长,以及因活性硫迁移至负极而导致的界面副反应,上述问题会导致电池工况条件下性能迅速衰退,引发电池失效和安全问题。本工作中,我们提出通过设计非对称的电极-电解质界面稳定锂-硫电池正负极电化学,协同促进电极/电解质体相和界面电荷输运,从而延长电池循环寿命,显著提升电化学性能。本文所讨论的策略有望指导电池界面理性设计,助力实现高性能的锂-硫电池。

关键词: 锂-硫电池, 锂金属负极, 硫正极, 电极-电解质界面

Abstract:

With a high cell-level specific energy and a low cost, lithium-sulfur (Li-S) battery has been intensively studied as one of the most promising candidates for competing the next-generation energy storage campaign. Currently, the practical use of Li-S battery is hindered by the rapidly declined storage performance during battery operation, as caused by irreversible loss of electroactive sulfide species at the cathode, dendrite formation at the anode and parasitic reactions at the electrode-electrolyte interface due to unfavorable cathode-anode crosstalk. In this perspective, we propose to stabilize the Li-S electrochemistry, and improve the storage performance of battery by designing asymmetric electrode-electrolyte interfaces that helps to simultaneously address the differentiated issues at both electrodes and facilitate charge transfer in the electrode/electrolyte and across the interfaces. The strategies discussed would shed lights on reasonable design of battery interfaces towards realization of high-performance Li-S batteries.

Key words: Lithium-sulfur battery, Lithium metal anode, Sulfur cathode, Electrode-electrolyte interface