电化学(中英文) ›› 2023, Vol. 29 ›› Issue (9): 2217009. doi: 10.13208/j.electrochem.2217009
所属专题: “下一代二次电池”专题文章
• 展望 • 上一篇
丑佳a,b, 王雅慧a,b, 王文鹏a, 辛森a,b,*(), 郭玉国a,b,*()
收稿日期:
2023-04-10
修回日期:
2023-06-11
接受日期:
2023-06-29
出版日期:
2023-09-28
发布日期:
2023-06-30
Jia Choua,b, Ya-Hui Wanga,b, Wen-Peng Wanga, Sen Xina,b,*(), Yu-Guo Guoa,b,*()
Received:
2023-04-10
Revised:
2023-06-11
Accepted:
2023-06-29
Published:
2023-09-28
Online:
2023-06-30
Contact:
*Tel: (86-10)62568158, E-mail: 摘要:
锂-硫电池具有高的理论电芯比能量和低成本,是极具应用前景的下一代电化学储能技术,已被广泛研究。实用化锂-硫电池技术目前面临的挑战主要包括正极侧电活性硫物种在充放电过程中的不可逆损失,负极侧枝晶形核生长,以及因活性硫迁移至负极而导致的界面副反应,上述问题会导致电池工况条件下性能迅速衰退,引发电池失效和安全问题。本工作中,我们提出通过设计非对称的电极-电解质界面稳定锂-硫电池正负极电化学,协同促进电极/电解质体相和界面电荷输运,从而延长电池循环寿命,显著提升电化学性能。本文所讨论的策略有望指导电池界面理性设计,助力实现高性能的锂-硫电池。
丑佳, 王雅慧, 王文鹏, 辛森, 郭玉国. 面向高性能锂-硫二次电池应用的非对称电极-电解质界面[J]. 电化学(中英文), 2023, 29(9): 2217009.
Jia Chou, Ya-Hui Wang, Wen-Peng Wang, Sen Xin, Yu-Guo Guo. Asymmetric Electrode-Electrolyte Interfaces for High-Performance Rechargeable Lithium-Sulfur Batteries[J]. Journal of Electrochemistry, 2023, 29(9): 2217009.
[1] |
Seh Z W, Sun Y, Zhang Q, Cui Y. Designing high-energy lithium-sulfur batteries[J]. Chem. Soc. Rev., 2016, 45(20): 5605-5634.
pmid: 27460222 |
[2] |
Xu H H, Wang S F, Manthiram A. Hybrid lithium-sulfur batteries with an advanced gel cathode and stabilized lithium-metal anode[J]. Adv. Energy Mater., 2018, 8(23): 1800813.
doi: 10.1002/aenm.v8.23 URL |
[3] |
Wang L L, Ye Y S, Chen N, Huang Y X, Li L, Wu F, Chen R J. Development and challenges of functional electrolytes for high-performance lithium-sulfur batteries[J]. Adv. Funct. Mater., 2018, 28(38): 1800919.
doi: 10.1002/adfm.v28.38 URL |
[4] |
Peng H J, Huang J Q, Cheng X B, Zhang Q. Review on high-loading and high-energy lithium-sulfur batteries[J]. Adv. Energy Mater., 2017, 7(24): 1700260.
doi: 10.1002/aenm.v7.24 URL |
[5] |
Huang S, Guan R T, Wang S J, Xiao M, Han D M, Sun L Y, Meng Y Z. Polymers for high performance Li-S batteries: Material selection and structure design[J]. Prog. Polym. Sci., 2018, 89: 19-60.
doi: 10.1016/j.progpolymsci.2018.09.005 URL |
[6] |
Barghamadi M, Best A S, Bhatt A I, Hollenkamp A F, Ruether T. Lithium-sulfur batteries —the solution is in the electrolyte, but is the electrolyte a solution?[J]. Energy Environ. Sci., 2014, 7(12): 3902-3920.
doi: 10.1039/C4EE02192D URL |
[7] |
Yan M, Wang W P, Yin Y X, Wan L J, Guo Y G. Interfacial design for lithium-sulfur batteries: From liquid to solid[J]. EnergyChem, 2019, 1(1): 100002.
doi: 10.1016/j.enchem.2019.100002 URL |
[8] |
Nazar L F, Cuisinier M, Quan P. Lithium-sulfur batteries[J]. MRS Bull., 2014, 39(5): 436-442.
doi: 10.1557/mrs.2014.86 URL |
[9] |
Li W, Wang P, Zhang M, Pan H, He X W, He P, Zhou H S. Functional CNTs@EMIM+-Br- electrode enabling polysulfides confining and deposition regulating for solid-state Li-sulfur battery[J]. Small, 2023, 19(6): 2205809.
doi: 10.1002/smll.v19.6 URL |
[10] |
Wang P F, He X, Lv Z C, Song S, Song X, Yi T F, Xu N, He P, Zhou H S. Light-driven polymer-based all-solid-state lithium-sulfur battery operating at room temperature[J]. Adv. Funct. Mater., 2023, 33(5): 2211074.
doi: 10.1002/adfm.v33.5 URL |
[11] |
Guo Y P, Li H Q, Zhai T Y. Reviving lithium-metal anodes for next-generation high-energy batteries[J]. Adv. Mater., 2017, 29(29): 1700007.
doi: 10.1002/adma.v29.29 URL |
[12] |
Cheng X B, Zhang R, Zhao C Z, Zhang Q. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chem. Rev., 2017, 117(15): 10403-10473.
doi: 10.1021/acs.chemrev.7b00115 URL |
[13] |
Xin S, Chang Z W, Zhang X B, Guo Y G. Progress of rechargeable lithium metal batteries based on conversion reactions[J]. Natl. Sci. Rev., 2017, 4(1): 54-70.
doi: 10.1093/nsr/nww078 URL |
[14] |
Zhang R, Li N W, Cheng X B, Yin Y X, Zhang Q, Guo Y G. Advanced micro/nanostructures for lithium metal anodes[J]. Adv. Sci., 2017, 4(3): 1600445.
doi: 10.1002/advs.v4.3 URL |
[15] |
Xin S, You Y, Wang S, Gao H, Yin Y X, Guo Y G. Solid-state lithium metal batteries promoted by nanotechnology: Progress and prospects[J]. ACS Energy Lett., 2017, 2(6): 1385-1394.
doi: 10.1021/acsenergylett.7b00175 URL |
[16] |
Lu D, Shao Y, Lozano T, Bennett W D, Graff G L, Polzin B, Zhang J, Engelhard M H, Saenz N T, Henderson W A. Failure mechanism for fast-charged lithium metal batteries with liquid electrolytes[J]. Adv. Energy Mater., 2015, 5(3): 1400993.
doi: 10.1002/aenm.v5.3 URL |
[17] |
Cheng X B, Zhang R, Zhao C Z, Wei F, Zhang J G, Zhang Q. A review of solid electrolyte interphases on lithium metal anode[J]. Adv. Sci., 2016, 3(3): 1500213.
doi: 10.1002/advs.v3.3 URL |
[18] | Yasin G, Arif M, Mehtab T, Lu X, Yu D L, Muhammad N, Nazir M T, Song H H. Understanding and suppression strategies toward stable Li metal anode for safe lithium batteries[J]. Energy Storage Mater., 2020, 25: 644-678. |
[19] |
Pan H, Zhang M H, Cheng Z, Jiang H Y, Yang J G, Wang P F, He P, Zhou H S. Carbon-free and binder-free Li-Al alloy anode enabling an all-solid-state Li-S battery with high energy and stability[J]. Sci. Adv., 2022, 8(15): eabn4372.
doi: 10.1126/sciadv.abn4372 URL |
[20] |
Kalaga K, Rodrigues M, Gullapalli H, Babu G, Ajayan P M. Quasi-solid electrolytes for high temperature lithium ion batteries[J]. ACS Appl. Mater. Inter., 2015, 7(46): 25777.
doi: 10.1021/acsami.5b07636 URL |
[21] |
Markevich E, Salitra G, Rosenman A, Talyosef Y, Chesneau F, Aurbach D. The effect of a solid electrolyte interphase on the mechanism of operation of lithium-sulfur batteries[J]. J. Mater. Chem. A, 2015, 3(39): 19873-19883.
doi: 10.1039/C5TA04613K URL |
[22] |
Markevich E, Salitra G, Talyosef Y, Chesneau F, Aurbach D. Review—on the mechanism of quasi-solid-state lithiation of sulfur encapsulated in microporous carbons: Is the existence of small sulfur molecules necessary?[J]. J. Electrochem. Soc., 2017, 164: A6244-A6253.
doi: 10.1149/2.0391701jes URL |
[23] |
Hassoun J, Scrosati B. Moving to a solid-state configuration: A valid approach to making lithium-sulfur batteries viable for practical applications[J]. Adv. Mater., 2010, 22(45): 5198.
doi: 10.1002/adma.201002584 |
[24] |
Yu X, Manthiram A. Electrode-electrolyte interfaces in lithium-sulfur batteries with liquid or inorganic solid electrolytes[J]. Accounts Chem. Res., 2017, 50(11): 2653-2660.
doi: 10.1021/acs.accounts.7b00460 pmid: 29112389 |
[25] |
Liu Y, Elias Y, Meng J, Aurbach D, Pang Q. Electrolyte solutions design for lithium-sulfur batteries[J]. Joule, 2021, 5(9): 2323-2364.
doi: 10.1016/j.joule.2021.06.009 URL |
[26] |
Hou L P, Zhang X Q, Li B Q, Zhang Q. Challenges and promises of lithium metal anode by soluble polysulfides in practical lithium-sulfur batteries[J]. Mater. Today, 2021, 45: 62.
doi: 10.1016/j.mattod.2020.10.021 URL |
[27] |
Zhao M, Li B Q, Zhang X Q, Huang J Q, Zhang Q. A perspective toward practical lithium-sulfur batteries[J]. ACS Central Sci., 2020, 6(7): 1095.
doi: 10.1021/acscentsci.0c00449 pmid: 32724844 |
[28] |
Bhargav A, He J, Gupta A, Manthiram A. Lithium-sulfur batteries: Attaining the critical metrics[J]. Joule, 2020, 4(2): 285-291.
doi: 10.1016/j.joule.2020.01.001 URL |
[29] |
Zhao M, Li B Q, Peng H J, Yuan H, Huang J Q. Challenges and opportunities towards practical lithium-sulfur batteries under lean electrolyte conditions[J]. Angew. Chem. Int. Ed., 2019, 132(31): 2-20.
doi: 10.1002/ange.v132.1 URL |
[30] |
Yama Da Y, Wang J H, Ko S, Watanabe E, Yamada A. Advances and issues in developing salt-concentrated battery electrolytes[J]. Nat. Energy, 2019, 4(4): 269-280.
doi: 10.1038/s41560-019-0336-z |
[31] |
Chen S R, Zheng J M, Mei D H, Han K S, Engelhard M H, Zhao W G, Xu W, Liu J, Zhang J G. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes[J]. Adv. Mater., 2018, 30(21): 1706102.
doi: 10.1002/adma.v30.21 URL |
[32] |
Cuisinier M, Cabelguen P E, Adams B D, Garsuch A, Balasubramanian M, Nazar L F. Unique behaviour of nonsolvents for polysulphides in lithium-sulphur batteries[J]. Energy Environ. Sci., 2014, 7(8): 2697-2750.
doi: 10.1039/C4EE00372A URL |
[33] |
Huang F F, Gao L J, Zou Y P, Ma G Q, Zhang J J, Xu S Q, Li Z X, Liang X. Akin solid-solid biphasic conversion Li-S battery revealed by coordinated carbonate electrolyte[J]. J. Mater. Chem. A., 2019, 7(20): 12498-12506.
doi: 10.1039/C9TA02877C URL |
[34] |
Gupta A, Bhargav A, Manthiram A. Highly solvating electrolytes for lithium-sulfur batteries[J]. Adv. Energy Mater., 2019, 9(6): 1803096.
doi: 10.1002/aenm.v9.6 URL |
[35] |
Zhang G, Peng H J, Zhao C Z, Chen X, Zhao L D, Li P, Huang J Q, Zhang Q. The radical pathway based on a lithium-metal-compatible high-dielectric electrolyte for lithium-sulfur batteries[J]. Angew. Chem. Int. Ed., 2018, 57(51): 16732.
doi: 10.1002/anie.201810132 pmid: 30370978 |
[36] |
Cuisinier M, Hart C, Balasubramanian M, Garsuch A, Nazar L F. Radical or not radical: Revisiting lithium-sulfur electrochemistry in nonaqueous electrolytes[J]. Adv. Energy Mater., 2015, 5(16): 1401801.
doi: 10.1002/aenm.v5.16 URL |
[37] |
Zou Q, Lu Y C. Solvent-dictated lithium sulfur redox reactions: An operando UV-vis spectroscopic study[J]. J. Phys. Chem. Lett., 2016, 7(8): 1518.
doi: 10.1021/acs.jpclett.6b00228 pmid: 27050386 |
[38] |
Wang W P, Zhang J, Chou J, Yin Y X, You Y, Xin S, Guo Y G. Solidifying cathode-electrolyte interface for lithium-sulfur batteries[J]. Adv. Energy Mater., 2021, 11(2): 2000791.
doi: 10.1002/aenm.v11.2 URL |
[39] |
Liu F Q, Wang W P, Yin Y X, Zhang S F, Guo Y G. Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries[J]. Sci. Adv., 2018, 4(10): eaat5383.
doi: 10.1126/sciadv.aat5383 URL |
[40] |
Shen Y Q, Zeng F L, Zhou X Y, Wang A B, Wang W K, Yuan N Y, Ding J N. A novel permselective organo-polysulfides/PVDF gel polymer electrolyte enables stable lithium anode for lithium-sulfur batteries[J]. J. Energy Chem., 2020, 48: 267-276.
doi: 10.1016/j.jechem.2020.01.016 URL |
[41] | Li Y J, Wang W Y, Liu X X, Mao E Y, Wang M T, Li G C, Fu L, Li Z, Eng AYS, She Z W, Sun Y M. Engineering stable electrode-separator interfaces with ultrathin conductive polymer layer for high-energy-density Li-S batteries[J]. Energy Storage Mater., 2019, 23: 261-268. |
[42] |
Wang W P, Zhang J, Yin Y X, Duan H, Chou J, Li S Y, Yan M, Xin S, Guo Y G. A rational reconfiguration of electrolyte for high-energy and long-life lithium-chalcogen batteries[J]. Adv. Mater., 2020, 32(23): 2000302.
doi: 10.1002/adma.v32.23 URL |
[43] |
Fu K K, Gong Y, Hitz G T, McOwen D W, Li Y, Xu S, Wen Y, Zhang L, Wang C, Pastel G. Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal-sulfur batteries[J]. Energy Environ. Sci., 2017, 10(7): 1568.
doi: 10.1039/C7EE01004D URL |
[44] |
Wang Q S, Jin J, Wu X W. A shuttle effect free lithium sulfur battery based on a hybrid electrolyte[J]. Phys. Chem. Chem. Phys., 2014, 16(39): 21225-21229.
doi: 10.1039/c4cp03694h pmid: 25198434 |
[45] |
Wang Q S, Guo J, Wu T, Jin J, Yang J H, Wen Z Y. Improved performance of Li-S battery with hybrid electrolyte by interface modification[J]. Solid State Ion., 2017, 300: 67-72.
doi: 10.1016/j.ssi.2016.11.001 URL |
[46] |
Sun C Z, Huang X, Jin J, Lu Y, Wang Q, Yang J H, Wen Z Y. An ion-conductive Li1.5Al0.5Ge1.5(PO4)3-based composite protective layer for lithium metal anode in lithium-sulfur batteries[J]. J. Power Sources, 2018, 377(15): 36-43.
doi: 10.1016/j.jpowsour.2017.11.063 URL |
[47] | Ozhabes Y, Gunceler D, Arias T A. Stability and surface diffusion at lithium-electrolyte interphases with connections to dendrite suppression[J]. Physics, 2015: arXiv.1504.05799. |
[48] |
Liu Z, Qi Y, Lin Y X, Chen L, Lu P, Chen L Q. Interfacial study on solid electrolyte interphase at Li metal anode: Implication for Li dendrite growth[J]. J. Electrochem. Soc., 2016, 163(3): A592.
doi: 10.1149/2.0151605jes URL |
[49] |
Fan X L, Ji X, Han F D, Yue J, Chen J, Chen L, Deng T, Jiang J J, Wang C S. Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery[J]. Sci. Adv., 2018, 4(12): eaau9245.
doi: 10.1126/sciadv.aau9245 URL |
[50] |
Duan H, Chen W P, Fan M, Wang W P, Yu L, Tan S J, Chen X, Zhang Q, Xin S, Wan L J, Guo Y G. Building an air stable and lithium deposition regulable garnet interface from moderate-temperature conversion chemistry[J]. Angew. Chem. Int. Ed., 2020, 59(29): 12069.
doi: 10.1002/anie.202003177 pmid: 32294296 |
[51] |
Fu K, Gong Y H, Dai J Q, Gong A, Han X G, Yao Y G, Wang C W, Wang Y B, Chen Y N, Yan C Y, Li Y J, Wachsman E D, Hu L B. Flexible, solid-state, ion-conducting membrane with 3d garnet nanofiber networks for lithium batteries[J]. PNAS, 2016, 113(26): 7094-7099.
doi: 10.1073/pnas.1600422113 pmid: 27307440 |
[52] |
Chen W P, Duan H, Shi J L, Qian Y, Wan J, Zhang X D, Sheng H, Guan B, Wen R, Yin Y X, Xin S, Guo Y G, Wan L J. Bridging interparticle Li+ conduction in a soft ceramic oxide electrolyte[J]. J. Am. Chem. Soc., 2021, 143(15): 5717.
doi: 10.1021/jacs.0c12965 pmid: 33843219 |
[53] |
Wang Y H, Yue J, Wang W P, Chen W P, Zhang Y, Yang Y G, Zhang J, Yin Y X, Zhang X, Xin S, Guo Y G. Constructing a stable interface between the sulfide electrolyte and the Li metal anode via a Li+-conductive gel polymer interlayer[J]. Mater. Chem. Front., 2021, 5(14): 5328-5335.
doi: 10.1039/D1QM00395J URL |
[54] |
Chen H, Zhou C J, Dong X R, Yan M, Liang J Y, Sin S, Wu X W, Guo Y G, Zeng X X. Revealing the superiority of fast ion conductor in composite electrolyte for dendrite-free lithium-metal batteries[J]. ACS Appl. Mater. Interfaces, 2021, 13(19): 22978-22986.
doi: 10.1021/acsami.1c04115 URL |
[1] | 王振宇, 高学平. 金属和合金作为锂-硫电池硫正极催化载体[J]. 电化学(中英文), 2023, 29(4): 2217001-. |
[2] | 王东浩, 晏鹤凤, 龚正良. 复合导电添加剂对全固态锂硫电池性能影响的研究[J]. 电化学(中英文), 2021, 27(4): 388-395. |
[3] | 陈规伟, 龚正良. 石榴石固体电解质Li3BO3界面改性研究[J]. 电化学(中英文), 2021, 27(1): 76-82. |
[4] | 邵钦君, 陈剑. 锂硫电池硫正极催化转换反应的研究进展[J]. 电化学(中英文), 2020, 26(5): 694-715. |
[5] | 王璐, 高学平. 基于钴酸锂载体构筑高体积比容量硫基复合材料[J]. 电化学(中英文), 2020, 26(5): 750-758. |
[6] | 郎双雁, 胡新成, 文 锐, 万立骏. 锂硫电池中电极过程的原位可视化研究进展[J]. 电化学(中英文), 2019, 25(2): 141-159. |
[7] | 夏永康, 顾明远, 杨红官, 于馨智, 鲁兵安. CVD 法制备三维石墨烯的电化学储能性能[J]. 电化学(中英文), 2019, 25(1): 89-103. |
[8] | 谭杰成,田艳红,张学军,樊开乐. PEG包覆涂层对含碳纤维导电剂的锂硫正极材料的影响[J]. 电化学(中英文), 2017, 23(6): 654-660. |
[9] | 袁守怡,庞莹,王丽娜,王永刚,夏永姚. 锂-硫电池研究现状及展望[J]. 电化学(中英文), 2016, 22(5): 453-463. |
[10] | 赵亮, 胡勇胜, 李泓, 王兆翔, 徐红星, 黄学杰, 陈立泉. 拉曼光谱在锂离子电池研究中的应用[J]. 电化学(中英文), 2011, 17(1): 12-23. |
[11] | 赵春荣, 余仲宝, 王维坤, 杨裕生, . 纳米碳纤维-硫正极电化学性能[J]. 电化学(中英文), 2009, 15(1): 88-91. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||