电化学(中英文) ›› 2021, Vol. 27 ›› Issue (4): 357-365. doi: 10.13208/j.electrochem.210329
收稿日期:
2021-03-27
修回日期:
2021-05-08
出版日期:
2021-08-28
发布日期:
2021-06-09
通讯作者:
田东旭,燕希强
E-mail:tiandx@dlut.edu.cn;965664856@qq.com
Wen-Jie Li1, Dong-Xu Tian1,*(), Hong Du1, Xi-Qiang Yan2,*()
Received:
2021-03-27
Revised:
2021-05-08
Published:
2021-08-28
Online:
2021-06-09
Contact:
Dong-Xu Tian,Xi-Qiang Yan
E-mail:tiandx@dlut.edu.cn;965664856@qq.com
摘要:
燃料电池的阴极反应的反应动力学速率非常慢,限制了燃料电池技术的发展。因此,寻找低成本、高活性的氧还原催化剂具有重要的意义。多元金属核壳团簇表现出优良的氧还原活性。在本文中,以原子个数为19、38、55和79的八面体团簇作催化剂模型,采用密度泛函理论(GGA-PBE-PAW)方法,研究了一系列不同尺寸核壳Nim@Mn-m (n = 19, 38, 55, 79;m = 1, 6, 13, 19; M = Pt, Pd, Cu, Au, Ag)团簇催化剂的活性规律。优化*O、*OH和*OOH吸附中间体结构,计算了吸附自由能和反应吉布斯自由能,以超电势为催化活性的描述符,研究了单原子Pt嵌入Nim@Aun-m团簇的活性规律。结果表明,Ni6@Pt1Au31具有最好的ORR活性,并且Ni1@Pt1Au17、Ni6@Pt1Au31、Ni13@Pt1Au41、Ni19@Pt1Au5表现出比Pt38团簇以及Pt(111)表面更高的催化活性。Bader电荷和态密度分析表面,核壳之间的电荷转移以及单原子Pt嵌入Nim@Aun-m表面,改变了吸附位的电子性质,降低了*OH的吸附强度,提高了ORR活性。单原子Pt嵌入Nim@Aun-m表面可能是一种合适的多元金属核壳ORR催化剂设计策略。
李文杰, 田东旭, 杜红, 燕希强. ORR催化剂Nim@Pt1Aun-m-1 (n = 19, 38, 55, 79; m = 1, 6, 13, 19)的密度泛函研究[J]. 电化学(中英文), 2021, 27(4): 357-365.
Wen-Jie Li, Dong-Xu Tian, Hong Du, Xi-Qiang Yan. DFT Study of Nim@Pt1Aun-m-1 (n=19, 38, 55, 79; m = 1, 6, 13, 19) Core-Shell ORR Catalyst[J]. Journal of Electrochemistry, 2021, 27(4): 357-365.
Table 2
Free energy change of ORR elementary steps for Ni6@M32 and Pt38 clusters
System | ΔG1/eV | ΔG2/eV | ΔG3/eV | ΔG4/eV |
---|---|---|---|---|
Pt38 | -2.47 | -1.74 | -1.14 | 0.42 |
Ni6@Pd32 | -1.93 | -1.91 | -1.11 | 0.03 |
Ni6@Pt32 | -2.10 | -1.79 | -1.02 | 0.01 |
Ni6@Cu32 | -2.70 | -1.63 | -1.50 | 0.91 |
Ni6@Au32 | -1.66 | -1.58 | -2.13 | 0.45 |
Ni6@Ag32 | -2.58 | -1.17 | -1.96 | 0.79 |
Pt(111) | -1.80 | -1.96 | -0.96 | -0.2 |
Table 3
Free energy change of ORR elementary steps for Ni6@Pt1N31(N = Pd, Cu, Ag, Au) and Pt38 clusters
System | ΔG1/eV | ΔG2/eV | ΔG3/eV | ΔG4/eV |
---|---|---|---|---|
Pt38 | -2.47 | -1.74 | -1.14 | 0.42 |
Ni6@Pt1Pd31 | -1.81 | -1.76 | -1.34 | -0.01 |
Ni6@Pt1Cu31 | -2.05 | -2.01 | -0.49 | -0.38 |
Ni6@Pt1Au31 | -1.52 | -1.01 | -1.61 | -0.77 |
Ni6@Pt1Ag31 | -2.92 | -0.23 | -1.56 | -0.21 |
Pt(111) | -1.80 | -1.96 | -0.96 | -0.20 |
[1] |
Antolini E, Passos R R, Ticianelli E A. Electrocatalysis of oxygen reduction on a carbon supported platinum-vanadium alloy in polymer electrolyte fuel cells[J]. Electrochim. Acta., 2002, 48(3): 263-270.
doi: 10.1016/S0013-4686(02)00644-8 URL |
[2] |
Gasteiger H A, Kocha S S, Sompalli B, Wagner F T. Activity benchmarks for Pt, Pt-alloy and non-Pt oxygen reduction catalysts for PEMFCs[J]. Appl. Catal. B - Environ., 2005, 56(1-2): 9-35.
doi: 10.1016/j.apcatb.2004.06.021 URL |
[3] |
Debe M K. Electrocatalyst approaches and challenges for automotive fuel cells[J]. Nature, 2012, 486(7401): 43-51.
doi: 10.1038/nature11115 URL |
[4] |
Chen J, Lim B, Lee E P, Xia Y. Shape-controlled synjournal of platinum nanocrystals for catalytic and electrocatalytic applications[J]. Nano Today, 2009, 4(1): 81-95.
doi: 10.1016/j.nantod.2008.09.002 URL |
[5] |
Guo S J, Wang E K. Noble metal nanomaterials: Controllable synjournal and application in fuel cells and analytical sensors[J]. Nano Today, 2011, 6(3): 240-264.
doi: 10.1016/j.nantod.2011.04.007 URL |
[6] |
Koenigsmann C, Santulli A C, Gong K, Vukmirovic M B, Zhou W P, Sutter E, Wong S S, Adzic R R. Enhanced electrocatalytic performance of processed, ultrathin, supported Pd-Pt core-shell nanowire catalysts for the oxygen reduction reaction[J]. J. Am. Chem. Soc., 2011, 133(25): 9783-9795.
doi: 10.1021/ja111130t URL |
[7] |
Koenigsmann C, Sutter E, Chiesa T A, Adzic R R, Wong S S. Highly enhanced electrocatalytic oxygen reduction performance observed in bimetallic palladium-based nano-wires prepared under ambient, surfactantless conditions[J]. Nano Lett., 2012, 12(4): 2013-2020.
doi: 10.1021/nl300033e URL |
[8] |
Sun S H, Zhang G X, Geng D S, Chen Y G, Li R Y, Cai M, Sun X L. A highly durable platinum nanocatalyst for proton exchange membrane fuel cells: multiarmed starlike nanowire single crystal[J]. Angew. Chem. Int. Ed., 2010, 50(2): 422-426.
doi: 10.1002/anie.201004631 URL |
[9] |
Yang P. Platinum-based electrocatalysts with core-shell nanostructures[J]. Angew. Chem. Int. Ed., 2011, 50(12): 2674-2676.
doi: 10.1002/anie.v50.12 URL |
[10] |
Strasser P, Koh S, Anniyev T, Greeley J, Nilsson A. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts[J]. Nature Chem., 2010, 2(6): 454-460.
doi: 10.1038/nchem.623 URL |
[11] |
Guo S J, Zhang S, Sun S H. Tuning nanoparticle catalysis for the oxygen reduction reaction[J]. Angew. Chem. Int. Ed., 2013, 52(33): 8526-8544.
doi: 10.1002/anie.201207186 URL |
[12] |
Mani P, Srivastava R, Strasser P. Dealloyed PtCu coreshell nanoparticle electrocatalysts for use in PEM fuel cell cathodes[J]. J. Phys. Chem. C, 2012, 112(7): 2770-2778.
doi: 10.1021/jp0776412 URL |
[13] |
Wang D L, Xin H L L, Hovden R, Wang H S, Yu Y C, Muller D A, Disalvo F J, Abrua H C. Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts[J]. Nat. Mater., 2012, 12(1): 81-87.
doi: 10.1038/nmat3458 URL |
[14] |
Wang G X, Wu H M, Wexler D, Liu H K, Savadogo O. Ni@Pt core-shell nanoparticles with enhanced catalytic activity for oxygen reduction reaction[J]. J. Alloy. Compd., 2010, 503(1): L1-L4.
doi: 10.1016/j.jallcom.2010.04.236 URL |
[15] |
Neergat M, Rahul R. Unsupported Cu-Pt core-shell nano-particles: Oxygen reduction reaction (ORR) catalyst with better activity and reduced precious metal content[J]. J. Electrochem. Soc., 2012, 159(7): F234-F241.
doi: 10.1149/2.039207jes URL |
[16] |
Jang J H, Lee E, Park J, Kim G, Hong S, Kwon Y U. Rational syntheses of core-shell Fex@Pt nanoparticles for the study of electrocatalytic oxygen reduction reaction[J]. Sci. Rep., 2013, 3: 2872.
doi: 10.1038/srep02872 URL |
[17] |
Chen Y M, Liang Z X, Yang F, Liu Y W, Chen S L. Ni-Pt core-shell nanoparticles as oxygen reduction electrocatalysts: Effect of Pt shell coverage[J]. J. Phys. Chem. C, 2011, 115(49): 24073-24079.
doi: 10.1021/jp207828n URL |
[18] |
Zhang Y F, Qin J, Leng D Y, Liu Q R, Xu X Y, Yang B, Yin F. Tunable strain drives the activity enhancement for oxygen reduction reaction on Pd@Pt core-shell electrocatalysts[J]. J. Power Sources, 2021, 485: 229340.
doi: 10.1016/j.jpowsour.2020.229340 URL |
[19] |
Park J, Zhang L, Choi S I, Roling L T, Lu N, Herron J A, Xie S F, Wang J G, Kim M J, Mavrikakis M, Xia Y N. Atomic layer-by-layer deposition of platinum on palladium octahedra for enhanced catalysts toward the oxygen reduction reaction[J]. ACS Nano, 2015, 9(3): 2635-2647.
doi: 10.1021/nn506387w URL |
[20] |
Zhang L, Iyyamperumal R, Yancey D F, Crooks R M, Henkelman G. Design of Pt-shell nanoparticles with alloy cores for the oxygen reduction reaction[J]. ACS Nano, 2013, 7(10): 9168-9172.
doi: 10.1021/nn403788a URL |
[21] |
Strasser P, Koh S, Anniyev T, Greeley J, More K, Yu C, Liu Z, Kaya S, Nordlund D, Ogasawara H, Toney M F, Nilsson A. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts[J]. Nat. Chem., 2010, 2(6): 454-460.
doi: 10.1038/nchem.623 URL |
[22] |
Zhang J L, Vukmirovic M B, Sasaki K, Nilekar A U, Ma-vrikakis M, Adzic R R. Mixed-metal Pt monolayer electrocatalysts for enhanced oxygen reduction kinetics[J]. J. Am. Chem. Soc., 2005, 127(36): 12480-12481.
doi: 10.1021/ja053695i URL |
[23] |
Nörskov J K, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin J R, Bligaard T, Jónsson H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode[J]. J. Phys. Chem. B, 2004, 108(46): 17886-17892.
doi: 10.1021/jp047349j URL |
[24] |
Cheng D J, Qiu X G, Yu H Y. Enhancing oxygen reduction reaction activity of Pt-shelled catalysts via subsurface alloying[J]. Phys. Chem. Chem. Phys., 2014, 16(38): 20377-20381.
doi: 10.1039/C4CP02863E URL |
[25] |
Wang L L, Johnson D D. Predicted trends of core-shell preferences for 132 late transition-metal binary-alloy nanoparticles[J]. J. Am. Chem. Soc., 2009, 131(39): 14023-14029.
doi: 10.1021/ja903247x URL |
[26] |
Shin J, Choi J H, Cha P R, Kim S K, Kim I, Lee S C, Jeong D S. Catalytic activity for oxygen reduction reaction on platinum-based core-shell nanoparticles: All-electron density functional theory[J]. Nanoscale, 2015, 7(38): 15830-15839.
doi: 10.1039/C5NR04706D URL |
[27] | Nair A, Pathak B. Computational screening for ORR activity of 3d transition metal based M@Pt core-shell clusters[J]. J. Phys. Chem. C, 2019, 127(6): 3634-3644. |
[28] |
Greeley J, Stephens I E L, Bondarenko A S, Johansson T P, Hansen H A, Jaramillo T F, Rossmeisl J, Chorkendorff I, Nørskov J K. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts[J]. Nat. Chem., 2009, 1(7): 552-556.
doi: 10.1038/nchem.367 URL |
[29] |
Bligaard T, Norskov J K, Dahl S, Matthiesen J, Christensen C H, Sehested J. The Brnsted-Evans-Polanyi relation and the volcano curve in heterogeneous catalysis[J]. J. Catal., 2004, 224(1): 206-217.
doi: 10.1016/j.jcat.2004.02.034 URL |
[30] |
Sobrinho D G, Nomiyama R K, Chaves A S, Piotrowski M J, Silva J. Structure, electronic, and magnetic properties of binary PtnTM55-n (TM = Fe, Co, Ni, Cu, Zn) nano-clusters: A density functional theory investigation[J]. J. Phys. Chem. C, 2015, 119(27): 15669-15679.
doi: 10.1021/acs.jpcc.5b02242 URL |
[31] |
Kresse G, Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium[J]. Phys. Rev. B, 1994, 49(20): 14251-14269.
doi: 10.1103/PhysRevB.49.14251 URL |
[32] |
Kresse G G, Furthmüller J J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys. Rev. B, 1996, 54(16): 11169-11186.
doi: 10.1103/PhysRevB.54.11169 URL |
[33] |
Perdew J P, Yue W. Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation[J]. Phys. Rev. B, 1986, 33(12): 8800-8802.
doi: 10.1103/PhysRevB.33.8800 URL |
[34] |
Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C. Erratum: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation[J]. Phys. Rev. B, 1993, 46(11): 6671-6687.
doi: 10.1103/PhysRevB.46.6671 URL |
[35] |
Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys. Rev. B, 1999, 59(3): 1758-1775.
doi: 10.1103/PhysRevB.59.1758 URL |
[36] |
Teter M P, Payne M C, Allan D C. Solution of Schröding-er’s equation for large systems[J]. Phys. Rev. B, 1989, 40(18): 12255-12263.
doi: 10.1103/PhysRevB.40.12255 URL |
[37] |
Grimme S. Accurate description of van der Waals complexes by density functional theory including empirical corrections[J]. J. Comput. Chem., 2004, 25(12): 1463-1473.
doi: 10.1002/(ISSN)1096-987X URL |
[38] |
Lee K, Murray Amonn D, Kong L, Lundqvist B I, Langreth D C. A higher-accuracy van der waals density functional[J]. Phys. Rev. B, 2010, 82(8): 081101.
doi: 10.1103/PhysRevB.82.081101 URL |
[39] |
Henkelman G, Arnaldsson A, Jónsson H. A fast and robust algorithm for Bader decomposition of charge density[J]. Comput. Mater. Sci., 2006, 36(3): 354-360.
doi: 10.1016/j.commatsci.2005.04.010 URL |
[40] |
Grgur B N, Markovi N M, Ross P N. Temperature-dependent oxygen electrochemistry on platinum low-index single crystal surfaces in acid solutions[J]. Can. J. Chem., 1997, 75(11): 1465-1471.
doi: 10.1139/v97-176 URL |
[41] |
Blizanac B B, Lucas C A, Gallagher M E, Arenz M, Ross P N, Markovic N M. Anion adsorption, CO oxidation, and oxygen reduction reaction on a Au(100) surface: The pH effect[J]. J. Phys. Chem. B, 2004, 108(2): 625-634.
doi: 10.1021/jp036483l URL |
[42] |
Wang L, Zeng Z H, Ma C, Liu Y F, Giroux M, Chi M F, Jin J, Greeley J, Wang C. Plating precious metals on nonprecious metal nanoparticles for sustainable electrocatalysts[J]. Nano Lett., 2017, 17(6): 3391-3395.
doi: 10.1021/acs.nanolett.7b00046 URL |
[43] |
Fang P P, Duan S, Lin X D, Anema J R, Li J F, Buriez O, Ding Y, Fan F R, Wu D Y, Ren B, Wang Z L, Amatore C, Tian Z Q. Tailoring Au-core Pd-shell Pt-cluster nanoparticles for enhanced electrocatalytic activity[J]. Chem. Sci., 2011, 2(3): 531-539.
doi: 10.1039/C0SC00489H URL |
[44] |
Dinesh B, Jyh-Pin C, Che Y, Hu A, Yang Y T, Chen T Y. Programming ORR Activity of Ni/NiOx@Pd electrocatalysts via controlling depth of surface-decorated atomic Pt clusters[J]. ACS Omega, 2018, 3(8): 8733-8744.
doi: 10.1021/acsomega.8b01234 URL |
[45] |
Wang H, An W. Promoting the oxygen reduction reaction with gold at step/edge sites of Ni@AuPt core-shell nano-particles[J]. Catal. Sci. Technol., 2017, 7(3): 596-606.
doi: 10.1039/C6CY02344D URL |
[1] | 郑天龙, 欧明玉, 徐松, 毛信表, 王释一, 和庆钢. 一体式可再生燃料电池双功能氧催化剂的研究进展[J]. 电化学(中英文), 2023, 29(7): 2205301-. |
[2] | 刘思淼, 周景娇, 季世军, 文钟晟. FeNi-CoP/NC双功能催化剂的制备及电催化性能研究[J]. 电化学(中英文), 2023, 29(10): 211118-. |
[3] | 郭鸿波, 王亚妮, 郭凯, 雷海涛, 梁作中, 张学鹏, 曹睿. 吸电子和亲水性Co-卟啉促进电催化氧还原反应的研究[J]. 电化学(中英文), 2022, 28(9): 2214002-. |
[4] | 张天恩, 颜雅妮, 张俊明, 瞿希铭, 黎燕荣, 姜艳霞. 调控Pt3Zn合金化程度改善酸性氧还原活性与稳定性[J]. 电化学(中英文), 2022, 28(4): 2106091-. |
[5] | 冯雅辰, 王翔, 王宇琪, 严会娟, 王栋. 电催化氧还原反应的原位表征[J]. 电化学(中英文), 2022, 28(3): 2108531-. |
[6] | 袁会芳, 张越, 翟兴吾, 胡立兵, 葛桂贤, 王刚, 于锋, 代斌. 氮掺杂碳原位锚定铜纳米颗粒用于高效氧还原反应催化剂[J]. 电化学(中英文), 2021, 27(6): 671-680. |
[7] | 林华, 吴艺津, 李君涛, 周尧. 一锅法制备Fe2O3@Fe-N-C氧还原电催化剂及其锌-空气电池的性能研究[J]. 电化学(中英文), 2021, 27(4): 366-376. |
[8] | 吴志鹏, 钟传建. 钯基氧还原和乙醇氧化反应电催化剂:关于结构和机理研究的一些近期见解[J]. 电化学(中英文), 2021, 27(2): 144-156. |
[9] | 秦雪苹, 朱尚乾, 张露露, 孙书会, 邵敏华. 酸性和碱性溶液中金属氮碳材料氧还原和氢析出反应的理论研究[J]. 电化学(中英文), 2021, 27(2): 185-194. |
[10] | 蔡转运, 刘佳, 关思远, 吴德印, 田中群. 紫罗碱衍生物分子结的电学性质理论研究[J]. 电化学(中英文), 2021, 27(1): 92-99. |
[11] | 徐明俊, 刘杰, 葛君杰, 刘长鹏, 邢巍. 长春应化所金属氮碳氧还原催化剂的研究进展[J]. 电化学(中英文), 2020, 26(4): 464-473. |
[12] | 徐能能, 乔锦丽. 锌-空气电池双功能催化剂研究进展[J]. 电化学(中英文), 2020, 26(4): 531-562. |
[13] | 杨智, 沈亚云, 周娥, 魏成玲, 秦好丽, 田娟. 前驱体中N含量对FeN/C催化剂氧还原活性的影响研究[J]. 电化学(中英文), 2020, 26(1): 130-135. |
[14] | 梁 栋, 房恒义, 姚 硕, 于洁玫, 张昭良, 姜占坤, 高学平, 黄太仲. 不同结构及氮掺杂NiO/rGO氧还原催化剂的制备与性能研究[J]. 电化学(中英文), 2019, 25(5): 589-600. |
[15] | 张利华, 陈峻峰, 黄皖唐, 胡勇有, 程建华, 陈元彩. Cu-bipy-BTC衍生碳基材料的制备及其氧还原电催化性能[J]. 电化学(中英文), 2019, 25(4): 511-521. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||