[1] |
Kim H, Kim H, Ding Z , et al. Recent progress in electrode materials for sodium-ion batteries[J]. Advanced Energy Materials, 2016,6(19):1600943.
|
[2] |
Chayambuka, Mulder G, Danilov D L, et al. Sodium-ion battery materials and electrochemical properties reviewed[J]. Advanced Energy Materials, 2018,8(16):1800079.
|
[3] |
Kim J, Choi M S, Shin K H , et al. Rational design of carbon nanomaterials for electrochemical sodium storage and capture[J]. Advanced Materials, 2019,31(34):1803444.
|
[4] |
Pu X J, Wang H M, Zhao D , et al. Recent progress in rechargeable sodium-ion batteries: toward high-power applications[J]. Small, 2019,15(32):1805427.
|
[5] |
Qian J F( 钱江锋), Gao X P( 高学平), Yang H X( 杨汉西 ). Electrochemical Na-storage materials and their applications for Na-ion batteries[J]. Journal of Electrochemistry( 电化学), 2013,19(6):523-529.
|
[6] |
Wang L G, Wang J, Guo F , et al. Understanding the initial irreversibility of metal sulfides for sodium-ion batteries via operando techniques[J]. Nano Energy, 2018,43:184-191.
|
[7] |
Zhu Y J, Wen Y, Fan X L , et al. Red phosphorus-single-walled carbon nanotube composite as a superior anode for sodium ion batteries[J]. ACS Nano, 2015,9(3):3254-3264.
|
[8] |
Hou H, Jing M J, Yang Y C , et al. Sb porous hollow microspheres as advanced anode materials for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2015,3(6):2971-2977.
|
[9] |
Hou H S, Qiu X, Wei W F , et al. Carbon anode materials for advanced sodium-ion batteries[J]. Advanced Energy Materials, 2017,7(24):1602898.
|
[10] |
Wang T, Su D W, Shanmukaraj D , et al. Electrode materials for sodium-ion batteries: considerations on crystal structures and sodium storage mechanisms[J]. Electroche mical Energy Reviews, 2018,1(2):200-237.
|
[11] |
Deng J, Gong Q, Ye H L , et al. Rational synjournal and assembly of Ni3S4 nanorods for enhanced electrochemical sodium-ion storage[J]. ACS Nano, 2018,12(2):1829-1836.
|
[12] |
Wang Z D, Song W, Yan W , et al. Ni3S2/Ni@S/C composite: Facile synjournal and high performance as the anode for Na-ion batteries[J]. Materials Letters, 2019,238:81-84.
|
[13] |
Wu Z G, Zhong Y J, Li J T , et al. l-histidine-assisted template-free hydrothermal synjournal of α-Fe2O3 porous multi-shelled hollow spheres with enhanced lithium storage properties[J]. Journal of Materials Chemistry A, 2014,2(31):12361-12367.
|
[14] |
Han Y, Liu S Y, Cui L , et al. Graphene-immobilized flower-like Ni3S2 nanoflakes as a stable binder-free anode material for sodium-ion batteries[J]. International Journal of Minerals, Metallurgy, Materials, 2018, 25(1): 88-93.
|
[15] |
Li J, Li J, Yan D , et al. Design of pomegranate-like clusters with NiS2 nanoparticles anchored on nitrogen-doped porous carbon for improved sodium ion storage performance[J]. Journal of Materials Chemistry A, 2018,6(15):6595-6605.
|
[16] |
Chen Q, Sun S, Zhai T , et al. Yolk-shell NiS2 nanoparticle-embedded carbon fibers for flexible fiber-shaped sodium battery[J]. Advanced Energy Materials, 2018,8(19):1800054.
|
[17] |
Chang X Q, Ma Y, Yang M , et al. In-situ solid-state growth of N, S codoped carbon nanotubes encapsulating metal sulfides for high-efficient-stable sodium ion storage[J]. Energy Storage Materials, 2019,23:358-366.
|
[18] |
Danks A E, Hall S R, Schnepp Z . The evolution of 'sol-gel' chemistry as a technique for materials synjournal[J]. Materials Horizons, 2016,3:91-112.
|
[19] |
Wang Y, Kong D Z, Shi W H , et al. Ice templated free-standing hierarchically WS2/CNT-rGO aerogel for high-performance rechargeable lithium and sodium ion batteries[J]. Advanced Energy Materials, 2016,6(21):1601057.
|
[20] |
Lin H L, Liu F, Wang X J , et al. Graphene-coupled flower-like Ni3S2 for a free-standing 3D aerogel with an ultra-high electrochemical capacity[J]. Electrochimica Acta, 2016,191:705-715.
|
[21] |
Sainbileg B, Lan Y B, Wang J K , et al. Deciphering anomalous raman features of regioregular poly (3-hexylthiophene) in ordered aggregation form[J]. The Journal of Physical Chemistry C, 2018,122(8):4224-4231.
|
[22] |
LI Z Q, Gong F, Zhou G , et al. NiS2/reduced graphene oxide nanocomposites for efficient dye sensitized solar cells[J]. The Journal of Physical Chemistry C, 2013,117(13):6561-6566.
|
[23] |
Li J B, Li J L, Ding Z B , et al. In-situ encapsulation of Ni3S2 nanoparticles into N-doped interconnected carbon networks for efficient lithium storage[J]. Chemical Engineering Journal, 2019,378:122108.
|
[24] |
Gao G, Zhang Q, Cheng X B , et al. Ultrafine ferroferric oxide nanoparticles embedded into mesoporous carbon nanotubes for lithium ion batteries[J]. Scientific Reports, 2015,5:17553.
|
[25] |
Song X S, Li X F, Bai Z M , et al. Morphology-dependent performance of nanostructured Ni3S2/Ni anode electrodes for high performance sodium ion batteries[J]. Nano Energy, 2016,26:533-540.
|
[26] |
Qin W, Chen T Q, Lu T , et al. Layered nickel sulfide-reduced graphene oxide composites synthesized via microwave-assisted method as high performance anode materials of sodium-ion batteries[J]. Journal of Power Sources, 2016,302:202-209.
|
[27] |
Qu B H, Ma C Z, Ji G , et al. Layered SnS2-reduced graphene oxide composite — a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material[J]. Advanced Materials, 2014,26(23):3854-3859.
|
[28] |
Wang J, Liu J L, Yang H , et al. MoS2 nanosheets decorated Ni3S2@MoS2 coaxial nanofibers: constructing an ideal heterostructure for enhanced Na-ion storage[J]. Nano Energy, 2016,20:1-10.
|
[29] |
Shuang W, Huang H, Kong L J , et al. Nitrogen-doped carbon shell-confined Ni3S2 composite nanosheets derived from Ni-MOF for high performance sodium-ion battery anodes[J]. Nano Energy, 2019,62:154-163.
|
[30] |
Shang C Q, Dong S M, Zhang S L , et al. A Ni3S2-PEDOT monolithic electrode for sodium batteries[J]. Electrochemistry Communications, 2015,50:24-27.
|
[31] |
Zhang Z J, Zhao H L, Xia Q , et al. High performance Ni3S2/Ni film with three dimensional porous architecture as binder-free anode for lithium ion batteries[J]. Electrochimica Acta, 2016,211:761-767.
|
[32] |
Hang T, Mukoyama D, Nara H , et al. Electrochemical impedance analysis of electrodeposited Si-O-C composite thick film on Cu microcones-arrayed current collector for lithium ion battery anode[J]. Journal of Power Sources, 2014,256:226-232.
|