[1] Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191.
[2] Geim A K. Graphene: Status and prospects[J]. Science, 2009, 324(5934): 1530-1534.
[3] Luo B, Liu S M, Zhi L J. Chemical approaches toward graphene-based nanomaterials and their applications in energy-related areas[J]. Small, 2012, 8(5): 630-646.
[4] Xu C H, Xu B H, Gu Y, et al. Graphene-based electrodes for electrochemical energy storage[J]. Energy &Environmental Science, 2013, 6(5): 1388-1414.
[5] Tang J, Liu J, Torad N L, et al. Tailored design of functional nanoporous carbon materials toward fuel cell applications[J]. Nano Today, 2014, 9(3): 305-323.
[6] Yoo E, Kim J, Hosono E, et al. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries[J]. Nano Letters, 2008, 8(8): 2277-2282.
[7] Wang G X, Shen X P, Yao J, et al. Graphene nanosheets for enhanced lithium storage in lithium ion batteries[J]. Carbon, 2009, 47(8): 2049-2053.
[8] Lian P C, Zhu X F, Liang S Z, et al. Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries[J]. Electrochimica Acta, 2010, 55(12): 3909-3914.
[9] Bhardwaj T, Antic A, Pavan B, et al. Enhanced electrochemical lithium storage by graphene nanoribbons[J]. Journal of the American Chemical Society, 2010, 132(36): 12556-12558.
[10] Zhang P, Wang R T, He M, et al. 3D hierarchical Co/CoO-graphene-carbonized melamine foam as a superior cathode toward long-life lithium oxygen batteries[J]. Advanced Functional Materials, 2016, 26(9): 1354-1364.
[11] Guo Z Y, Zhou D D, Dong X L, et al. Ordered hierarchical mesoporous/macroporous carbon: a high-performance catalyst for rechargeable Li-O2 batteries[J]. Advanced Materials, 2013, 25(39): 5668-5672.
[12] Ye J L(叶江林), Zhu Y W(朱彦武). Porous carbon materials produced by KOH activation for supercapacitor electrodes[J]. Journal of Electrochemistry(电化学), 2017, 23(5): 548-559.
[13] Xu Y X, Lin Z Y, Zhong X, et al. Holey graphene frameworks for highly efficient capacitive energy storage[J]. Nature Communications, 2014, 5: 4554.
[14] Xiao J, Mei D H, Li X L, et al. Hierarchically porous graphene as a lithium-air battery electrode[J]. Nano Letters, 2011, 11(11): 5071-5078.
[15] Sun B, Huang S D, Chen S Q, et al. Porous graphene nanoarchitectures an efficient catalyst for low charge-overpotential, long life and high capacity lithium-oxygen batteries[J]. Nano Letters, 2014, 14(6): 3145-3152.
[16] Kim D Y, Jin X, Lee C H, et al. Improved electrochemical performance of ordered mesoporous carbon by incorporating macropores for Li-O2 battery cathode[J]. Carbon, 2018, 133: 118-126.
[17] Lin Y, Moitoso B, Martinez-Martinez C, et al. Ultrahigh-capacity lithium-oxygen batteries enabled by dry-pressed holey graphene air cathodes[J]. Nano Letters, 2017, 17(5): 3252-3260.
[18] Lacey S D, Walsh E D, Hitz E, et al. Highly compressible, binderless and ultrathick holey graphene-based electrode architectures[J]. Nano Energy, 2017, 31: 386-392.
[19] Han J H, Guo X W, Ito Y, et al. Effect of chemical doping on cathodic performance of bicontinuous nanoporous graphene for Li-O2 batteries[J]. Anvanced Energy Materials, 2016, 6(3): 1501870.
[20] Lin X D, Cao Y, Cai S R, et al. Ruthenium@mesoporous graphene-like carbon: a novel three-dimensional cathode catalyst for lithium-oxygen batteries[J]. Journal of Materials Chemistry A, 2016, 4(20): 7788-7794.
[21] Zhao C T, Yu C, Liu S H, et al. 3D porous N-doped graphene frameworks made of interconnected nanocages for ultrahigh-rate and long-life Li-O2 batteries[J]. Anvanced Energy Materials, 2015, 25(44): 6913-6920.
[22] Liu B, Sun Y L, Liu L, et al. Advances in manganese-based oxides cathodic electrocatalysts for Li-air batteries[J]. Advanced Functional Materials, 2018, 28(15): 1704973.
[23] Liu T(刘通), Li N(李娜), Liu Q C(刘清朝), et al. Porous Co3O4 hollow nanospheres cathode catalyst for high-capacity and long-cycle Li-air batteries[J]. Journal of Electrochemistry(电化学), 2012, 134(6): 2902-2905.
[24] He M, Zhang P, Xu S, et al. Morphology engineering of Co3O4 nanoarrays as free-standing catalysts for lithium-oxygen batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(36): 23713-23720.
[25] Sinitskii A, Tour J M. Patterning graphene through the self-assembled templates: toward periodic two-dimensional graphene nanostructures with semiconductor properties[J]. Journal of the Americal Chemical Society, 2010, 132(42): 14730-14732.
[26] Zeng Z Y, Huang X, Yin Z Y, et al. Fabrication of graphene nanomesh by using an anodic aluminum oxide membrane as a template[J]. Advanced Materials, 2012, 24(30): 4138-
4142.
[27] Jiang Z Q, Pei B, Manthiram A. RandomLy stacked holey graphene anodes for lithium ion batteries with enhanced electrochemical performance[J]. Journal of Materials Chemistry A, 2013, 1(26): 7775-7781.
[28] Yu D S, Wei L, Jiang W C, et al. Nitrogen doped holey graphene as an efficient metal-free multifunctional electrochemical catalyst for hydrazine oxidation and oxygen reduction[J]. Nanoscale, 2013, 5(8): 3457-3464.
[29] Liu J Y, Cai H B, Yu X X, et al. Fabrication of graphene nanomesh and improved chemical enhancement for raman spectroscopy[J]. Journal of Materials Chemistry C, 2012, 116(29): 15741-15746.
[30] Kotchey G P, Allen B L, Vedala H, et al. A. Star, the enzymatic oxidation of graphene oxide[J]. ACS Nano, 2011, 5(3): 2098-2108.
[31] Solís-Fernández P, Yoshida K, Ogawa Y, et al. Dense arrays of highly aligned graphene nanoribbons produced by substrate-controlled metal-assisted etching of graphene[J]. Advanced Materials, 2013, 25(45): 6562-6568.
[32] Zhang Y J, Ji L, Li W F, et al. Highly defective graphite for scalable synthesis of nitrogen doped holey graphene with high volumetric capacitance[J]. Journal of Power Sources, 2016, 334: 104-111.
[33] Xu Y X, Chen C Y, Zhao Z P, et al. Solution processable holey graphene oxide and its derived macrostructures for high-performance supercapacitors[J]. Nano Letters, 2015, 15(7): 4605-4610.
[34] Xing Z C, Tian J Q, Liu Q, et al. Holey graphene nano-sheets: large-scale rapid preparation and their application toward highly-effective water cleaning[J]. Nanoscale, 2014, 6(20): 11659-11663.
[35] Lin Y, Watson K A, Kim J W, et al. Bulk preparation of holey graphene via controlled catalytic oxidation[J]. Nanoscale, 2013, 5(17): 7814-7824.
[36] Zhou D, Cui Y, Xiao P W, et al. A general and scalable synthesis approach to porous graphene[J]. Nature Communications, 2014, 5:4716.
[37] Jiang Z Q, Pei B, Manthiram A. RandomLy stacked holey graphene anodes for lithium ion batteries with enhanced electrochemical performance[J]. Journal of Materials Chemistry A, 2013, 1(26): 7775-7781
[38] Ma Z Y, Cao H L, Zhou X F, et al. Hierarchical porous MnO/graphene composite aerogel as high-performance anode material for lithium ion batteries[J]. RSC Advances, 2017, 7(26): 15857-15863.
[39] Yang J, Yu S X, Yan X B, et al. Synthesis of a graphene nanosheet film with attached amorphous carbon nanoparticles by their simultaneous electrodeposition[J]. Carbon, 2010, 48(9): 2644-2673.
[40] Yang J, Yan X B, Chen J T, et al. Comparison between metal ion and polyelectrolyte functionalization of grapheme nanosheets for the electrophoretic deposition of graphene nanosheet films[J]. RSC Advances, 2012, 2(25): 9665-9670.
[41] Yang J, Yan X B, Wang Y, et al. Deposition of bio-mimicking graphene sheets with lotus leaf-like and cell-like structures on the nickel substrate[J]. Chinese Science Bulletin, 2012, 57(23): 3036-3039.
[42] Nguyen H V, Tun N M, Kryukov A Y, et al. Dependence of the “solubility” of oxidized carbon nanomaterials on the acidity of aqueous solutions[J]. Physical Chemistry of Nanoclusters and Nanomaterials, 2013, 88(9): 1394-1398.
[43] Ryu S W, Lee B, Hong S K, et al. Salting-out as a scalable, in-series purification method of graphene oxides from microsheets to quantum dots[J]. Carbon, 2013, 63: 45-53.
[44] Wu Q L, Jiang M L, Zhang X F, et al. A novel octahedral MnO/RGO composite prepared by thermal decomposition as a noble-metal free electrocatalyst for ORR[J]. Journal of Materials Science, 2017, 52(11): 6656-6669. |