[1] Wang Y G, Song Y F, Xia Y Y. Electrochemical capacitors: Mechanism, materials, systems, characterization and applications[J]. Chemical Society Reviews, 2016, 45(21): 5925-5950.
[2] Miller J R, Simon P. Materials science: Electrochemical capacitors for energy management[J]. Science, 2008, 321(5889): 651-652.
[3] Simon P, Gogotsi Y, Dunn B. Where do batteries end and supercapacitors begin?[J]. Science, 2014, 343(6176): 1210-1211.
[4] Augustyn V, Come J, Lowe M A, et al. High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance[J]. Nature Materials, 2013, 12(6): 518-522.
[5] Burke A. Ultracapacitors: Why, how, and where is the technology[J]. Journal of Power Sources, 2000, 91(1): 37-50.
[6] Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7(11): 845-854.
[7] Frackowiak E. Carbon materials for supercapacitor application[J]. Physical Chemistry Chemical Physics, 2007, 9(15): 1774-1785.
[8] Pandolfo A G, Hollenkamp A F. Carbon properties and their role in supercapacitors[J]. Journal of Power Sources, 2006, 157(1): 11-27.
[9] Pech D, Brunet M, Durou H, et al. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon[J]. Nature Nanotechnology, 2010, 5(9): 651-654.
[10] Zhang L L, Zhao X S. Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews, 2009, 38(9): 2520-2531.
[11] Conway B E. Electrochemical supercapacitors: Scientific fundamentals and technological applications[M]. New York: Kluwer Academic/Plenum Publishers, 1999.
[12] Chmiola J, Yushin G, Gogotsi Y, et al. Anomalous increase in carbon at pore sizes less than 1 nanometer[J]. Science, 2006, 313(5794): 1760-1763.
[13] Chmiola J, Largeot C, Taberna P L, et al. Desolvation of ions in subnanometer pores and its effect on capacitance and double-layer theory[J]. Angewandte Chemie-International Edition, 2008, 47(18): 3392-3395.
[14] Chmiola J, Yushin G, Dash R, et al. Effect of pore size and surface area of carbide derived carbons on specific capacitance[J]. Journal of Power Sources, 2006, 158(1): 765-772.
[15] Frackowiak E, Béguin F. Carbon materials for the electrochemical storage of energy in capacitors[J]. Carbon, 2001, 39(6): 937-950.
[16] Gryglewicz G, Machnikowski J, Lorenc G E, et al. Effect of pore size distribution of coal-based activated carbons on double layer capacitance [J]. Electrochimica Acta, 2005, 50(5): 1197-1206.
[17] Vix G C, Frackowiak E, Jurewicz K, et al. Electrochemical energy storage in ordered porous carbon materials[J]. Carbon, 2005, 43(6): 1293-1302.
[18] Guo Y, Yu L, Wang C Y, et al. Hierarchical tubular structures composed of Mn-based mixed metal oxide nanoflakes with enhanced electrochemical properties[J]. Advanced Functional Materials, 2015, 25(32): 5184-5189.
[19] Chen Y M, Li Z, Lou X W. General formation of MxCo(3-x)S4 (M=Ni, Mn, Zn) follow tubular structures for hybrid supercapacitors[J]. Angewandte Chemie International Edition, 2015, 54(36): 10521-10524.
[20] Yu L, Guan B Y, Xiao W, et al. Formation of yolk-shelled Ni-Co mixed oxide nanoprisms with enhanced electrochemical performance for hybrid supercapacitors and lithium ion batteries[J]. Advanced Energy Materials, 2015, 5(21): 1500981.
[21] Li L, Peng S, Wu H B, et al. A flexible quasi-solid-state asymmetric electrochemical capacitor based on hierarchical porous V2O5 nanosheets on carbon nanofibers[J]. Advanced Energy Materials, 2015, 5(17): 1500753.
[22] Yu X Y, Yu L, Lou X W. Metal sulfide hollow nanostructures for electrochemical energy storage[J]. Advanced Energy Materials, 2016, 6(3): 1501333.
[23] Helmholtz H. Studien über electrische grenzschichten[J]. Annalen der Physik, 1879, 243(7): 337-382.
[24] Huang J, Qiao R, Sumpter B G, et al. Effect of diffuse layer and pore shapes in mesoporous carbon supercapacitors [J]. Journal of Materials Research, 2011, 25(8): 1469-1475.
[25] Huang J, Sumpter B G, Meunier V. Theoretical model for nanoporous carbon supercapacitors[J]. Angewandte Chemie International Edition, 2008, 47(3): 520-524.
[26] Huang J, Sumpter B G, Meunier V, et al. Curvature effects in carbon nanomaterials: Exohedral versus endohedral supercapacitors[J]. Journal of Materials Research, 2011, 25(8): 1525-1531.
[27] Gouy G. Sur la constitution de la charge electrique a la surfaced’ unelectrolyte[J]. Journal De Physique Théorique Et Appliquée, 1910, 9: 457-468.
[28] Chapman D L. A contribution to the theory of electrocapillarity[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1913, 25(148): 475-481.
[29] Stern O. Zur theorie der elektrolytischen doppelschicht[J]. Zeitschrift für Elektrochemie und Angewandte Physikalische Chemie, 1924, 30(21/22): 508-516.
[30] Bikerman J J. Structure and capacity of electrical double layer[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1942, 33(220): 384-397.
[31] Aranda R M J, Grosse C, López G J J, et al. Electrokinetics of suspended charged particles taking into account the excluded volume effect[J]. Journal of Colloid and Interface Science, 2009, 335(2): 250-256.
[32] López G J J, Aranda R M J, Grosse C, et al. Equilibrium electric double layer of charged spherical colloidal particles: Effect of different distances of minimum ion approach to the particle surface[J]. Journal of Physical Chemistry B, 2010, 114(22): 7548-7556.
[33] López G J J, Aranda R M J, Horno J. Excluded volume effect on the electrophoretic mobility of colloidal particles[J]. Journal of Colloid and Interface Science, 2008, 323(1): 146-152.
[34] López G J J, Horno J,Grosse C. Poisson-Boltzmann description of the electrical double layer including ion size effects[J]. Langmuir, 2011, 27(23): 13970-13974.
[35] López G J J, Horno J, Grosse C. Equilibrium properties of charged spherical colloidal particles suspended in aqueous electrolytes: Finite ion size and effective ion permittivity effects[J]. Journal of Colloid and Interface Science, 2012, 380(1): 213-221.
[36] Borukhov I, Andelman D, Orland H. Steric effects in electrolytes: A modified poisson-boltzmann equation[J]. Physical Review Letters, 1997, 79(3): 435-438.
[37] Borukhov I, Andelman D, Orland H. Adsorption of large ions from an electrolyte solution: A modified Poisson-Boltzmann equation[J]. Electrochimica Acta, 2000, 46(2/3): 221-229.
[38] Silalahi A R J, Boschitsch A H, Harris R C, et al. Comparing the predictions of the nonlinear Poisson-Boltzmann equation and the ion size-modified Poisson-Boltzmann equation for a low-dielectric charged spherical cavity in an aqueous salt solution[J]. Journal of Chemical Theory and Computation, 2010, 6(12): 3631-3639.
[39] Biesheuvel P M, Van Soestbergen M. Counterion volume effects in mixed electrical double layers[J]. Journal of Colloid and Interface Science, 2007, 316(2): 490-499.
[40] Biesheuvel P M, Lyklema J. Sedimentation-diffusion equilibrium of binary mixtures of charged colloids including volume effects[J]. Journal of Physics Condensed Matter, 2005, 17(41): 6337-6352.
[41] Biesheuvel P M, Leermakers F A M, Stuart M A C. Self-consistent field theory of protein adsorption in a non-Gaussian polyelectrolyte brush[J]. Physical Review E-Statistical, Nonlinear, and Soft Matter Physics, 2006, 73(1): 011802.
[42] Alijó P H R, Tavares F W, Biscaia E C. Double layer interaction between charged parallel plates using a modified Poisson-Boltzmann equation to include size effects and ion specificity[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 412: 29-35.
[43] Tresset G. Generalized Poisson-Fermi formalism for investigating size correlation effects with multiple ions[J]. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2008, 78(6): 061506.
[44] Huang J, Sumpter B G, Meunier V. A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes[J]. Chemistry, 2008, 14(22): 6614-6626.
[45] Dickinson E J F, Compton R G. Diffuse double layer at nanoelectrodes[J]. Journal of Physical Chemistry C, 2009, 113(41): 17585-17589.
[46] Henstridge M C, Dickinson E J F, Compton R G. On the estimation of the diffuse double layer of carbon nanotubes using classical theory: Curvature effects on the Gouy-Chapman limit[J]. Chemical Physics Letters, 2010, 485(1/3): 167-170.
[47] Hamou R F, Biedermann P U, Erbe A, et al. Numerical simulation of probing the electric double layer by scanning electrochemical potential microscopy[J]. Electrochimica Acta, 2010, 55(18): 5210-5222.
[48] Hamou R F, Biedermann P U, Erbe A, et al. Numerical analysis of Debye screening effect in electrode surface potential mapping by scanning electrochemical potential microscopy[J]. Electrochemistry Communications, 2010, 12(10): 1391-1394.
[49] Wang H, Varghese J, Pilon L. Simulation of electric double layer capacitors with mesoporous electrodes: Effects of morphology and electrolyte permittivity[J]. Electrochimica Acta, 2011, 56(17): 6189-6197.
[50] Booth F. The dielectric constant of water and the saturation effect[J]. The Journal of Chemical Physics, 1951, 19(4): 391-394.
[51] Booth F. Dielectric constant of polar liquids at high field strengths[J]. The Journal of Chemical Physics, 1955, 23(3): 453-457.
[52] Wang H N, Pilon L. Accurate simulations of electric double layer capacitance of ultramicroelectrodes[J]. Journal of Physical Chemistry C, 2011, 115(33): 16711-16719.
[53] Wang H, Pilon L. Mesoscale modeling of electric double layer capacitors with three-dimensional ordered structures[J]. Journal of Power Sources, 2013, 221: 252-260.
[54] Kilic M S, Bazant M Z, Ajdari A. Steric effects in the dynamics of electrolytes at large applied voltages. II. Modified Poisson-Nernst-Planck equations[J]. Physical Review E-Statistical, Nonlinear, and Soft Matter Physics, 2007, 75(2): 021503.
[55] Adamczyk Z, Belouschek P, Lorenz D. Electrostatic interactions of bodies bearing thin double-layers II. exact numerical solutions[J]. Berichte der Bunsengesellschaft für Physikalische Chemie, 1990, 94(12): 1492-1499.
[56] Wang H, Thiele A, Pilon L. Simulations of cyclic voltammetry for electric double layers in asymmetric electrolytes: A generalized modified Poisson-Nernst-Planck model[J]. Journal of Physical Chemistry C, 2013, 117(36): 18286-18297.
[57] Girard H L, Wang H N, D'entremont A L, et al. Physical interpretation of cyclic voltammetry for hybrid pseudocapacitors[J]. Journal of Physical Chemistry C, 2015, 119(21): 11349-11361.
[58] Girard H L, Wang H N, D'entremont A L, et al. Enhancing faradaic charge storage contribution in hybrid pseudocapacitors[J]. Electrochimica Acta, 2015, 182: 639-651.
[59] Girard H L, Dunn B, Pilon L. Simulations and interpretation of three-electrode cyclic voltammograms of pseudocapacitive electrodes[J]. Electrochimica Acta, 2016, 211: 420-429.
[60] Mei B A, Munteshari O, Lau J, et al. Physical interpretations of Nyquist plots for EDLC electrodes and devices[J]. The Journal of Physical Chemistry C, 2018, 122(1): 194-206.
[61] Wu Z, Li L, Yan J M, et al. Materials design and system construction for conventional and new-concept supercapacitors[J]. Advanced Science, 2017, 4(6): 1600382.
[62] Mei B A, Pilon L. Three-dimensional cyclic voltammetry simulations of EDLC electrodes made of ordered carbon spheres[J]. Electrochimica Acta, 2017, 255: 168-178.
[63] Mei B A, Li B, Lin J, et al. Multidimensional cyclic voltammetry simulations of pseudocapacitive electrodes with a conducting nanorod scaffold[J]. Journal of the Electrochemical Society, 2017, 164(13): A3237-A3252.
|