1. Stottlemyer, A. L.; Kelly, T. G.; Meng, Q.;et al Reactions of oxygen-containing molecules on transition metal carbides: Surface science insight into potential applications in catalysis and electrocatalysis. Surface Science Reports 2012, 67 (9-10), 201-232.
2. Zeng, M.; Li, Y., Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A 2015, 3 (29), 14942-14962.
3. Liang, C.; Li, W.; Wei, Z.; et al, Catalytic Decomposition of Ammonia over Nitrided MoNx/g-Al2O3 and NiMoNy/g-Al2O3 Catalysts. Industrial & Engineering Chemistry Research 2000, 39 (10), 3694-3697.
4. Lee, J. S.; Locatelli, S.; Oyama, S. T.; et al, Molybdenum carbide catalysts 3. Turnover rates for the hydrogenolysis of n-butane. Journal of Catalysis 1990, 125 (1), 157-170.
5. Ledoux, M. J.; Huu, C. P.; Guille, J.; et al, Compared activities of platinum and high specific surface area Mo2C and WC catalysts for reforming reactions: I. Catalyst activation and stabilization: Reaction of n-hexane. Journal of Catalysis 1992, 134 (2), 383-398.
6. Lee, J. S.; Yeom, M.H.; Lee, D.S. , Journal of Molecular Catalysis 1990, 62, 145.
7. Lee, J.S.; Yeom, M.H.; Park, K.Y.; et al., Preparation and benzene hydrogenation activity of supported molybdenum carbide catalysts. Journal of Catalysis 1991, 128 (1), 126-136.
8. Ramanathan, S.; Oyama, S. T., New Catalysts for Hydroprocessing: Transition Metal Carbides and Nitrides. The Journal of Physical Chemistry 1995, 99 (44), 16365-16372.
9. Claridge, J. B.; York, A. P. E.; Brungs, A. J.; et al, New Catalysts for the Conversion of Methane to Synthesis Gas: Molybdenum and Tungsten Carbide. Journal of Catalysis 1998, 180 (1), 85-100.
10. Patterson, P. M.; Das, T. K.; Davis, B. H., Carbon monoxide hydrogenation over molybdenum and tungsten carbides. Applied Catalysis A: General 2003, 251 (2), 449-455.
11. Meng, H.; Shen, P. K., The beneficial effect of the addition of tungsten carbides to Pt catalysts on the oxygen electroreduction. Chemical Communications 2005, (35), 4408-4410.
12. Cao, B.; Neuefeind, J. C.; Adzic, R. R.; Khalifah, P. G., Molybdenum nitrides as oxygen reduction reaction catalysts: structural and electrochemical studies. Inorg Chem 2015, 54 (5), 2128-36.
13. Fernandez, E. M.; Moses, P. G.; Toftelund, A.; et al, Scaling relationships for adsorption energies on transition metal oxide, sulfide, and nitride surfaces. Angewandte Chemie-International Edition 2008, 47 (25), 4683-4686.
14. Sproul, W. D.; Graham, M. E.; Wong, M.-S.; et al, Reactive unbalanced magnetron sputtering of the nitrides of Ti, Zr, Hf, Cr, Mo, Ti-Al, Ti-Zr and Ti-Al-V. Surface and Coatings Technology 1993, 61 (1-3), 139-143.
15. Peter, H.; et al., Structural and mechanical properties of chromium nitride, molybdenum nitride, and tungsten nitride thin films. Journal of Physics D: Applied Physics 2003, 36 (8), 1023.
16. Wang, J.; Castonguay, M.; Deng, J.; et al, RAIRS and TPD study of CO and NO on b-Mo2C. Surface Science 1997, 374 (1-3), 197-207.
17. St. Clair, T.; Dhandapani, B.; Oyama, S. T., Cumene hydrogenation turnover rates on Mo2C: CO and O2 as probes of the active site. Catalysis Letters 1999, 58 (4), 169-171.
18. Wu, W.; Wu, Z.; Liang, C.; et al, In Situ FT-IR Spectroscopic Studies of CO Adsorption on Fresh Mo2C/Al2O3 Catalyst. The Journal of Physical Chemistry B 2003, 107 (29), 7088-7094.
19. Wu, W.; Wu, Z.; Liang, C.; et al, An IR study on the surface passivation of Mo2C/Al2O3 catalyst with O2, H2O and CO2. Physical Chemistry Chemical Physics 2004, 6 (24), 5603-5608.
20. Bej, S. K.; Bennett, C. A.; Thompson, L. T., Acid and base characteristics of molybdenum carbide catalysts. Applied Catalysis A: General 2003, 250 (2), 197-208.
21. McGee, R. C. V.; Bej, S. K.; Thompson, L. T., Basic properties of molybdenum and tungsten nitride catalysts. Applied Catalysis A: General 2005, 284 (1-2), 139-146.
22. Dubois, J.; Epicier, T.; Esnouf, C.; et al, Neutron powder diffraction studies of transition metal hemicarbides M2C1-x--I. Motivation for a study on W2C and Mo2C and experimental background for an in situ investigation at elevated temperature. Acta Metallurgica 1988, 36 (8), 1891-1901.
23. Epicier, T.; Dubois, J.; Esnouf, C.; et al, Neutron powder diffraction studies of transition metal hemicarbides M2C1-x--II. In situ high temperature study on W2C1-x and Mo2C1-x. Acta Metallurgica 1988, 36 (8), 1903-1921.
24. Shi, X. R.; Wang, S. G.; Wang, H.; et al, Structure and stability of b-Mo2C bulk and surfaces: A density functional theory study. Surface Science 2009, 603 (6), 852-859.
25. Tominaga, H.; Nagai, M., Density Functional Theory of Water-Gas Shift Reaction on Molybdenum Carbide. The Journal of Physical Chemistry B 2005, 109 (43), 20415-20423.
26. Tominaga, H.; Nagai, M., Theoretical study of methane reforming on molybdenum carbide. Applied Catalysis A: General 2007, 328 (1), 35-42.
27. Tominaga, H.; Nagai, M., Mechanism of thiophene hydrodesulfurization on clean/sulfided b-Mo2C(0 0 1) based on density functional theory--cis- and trans-2-Butene formation at the initial stage. Applied Catalysis A: General 2008, 343 (1-2), 95-103.
28. Kresse, G.; Furthmuller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B 1996, 54 (16), 11169.
29. Kresse, G.; Hafner, J., Ab initio molecular dynamics for open-shell transition metals. Physical Review B 1993, 48 (17), 13115.
30. Blochl, P. E., Projector Augmented-Wave Method. Phys. Rev. B 1994, 50 (24), 17953-17979.
31. Kresse, G.; Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B 1999, 59 (3), 1758.
32. Parthe, E.; Sadogopan, V., The structure of dimolybdenum carbide by neutron diffraction technique. Acta Crystallographica 1963, 16 (3), 202-205.
33. Suetin, D.; Shein, I.; Kurlov, A.; et al, Band structure and properties of polymorphic modifications of lower tungsten carbide W2C. Physics of the Solid State 2008, 50 (8), 1420-1426.
34. Suetin, D. V.; Shein, I. R.; Ivanovskii, A. L., Structural, electronic properties and stability of tungsten mono- and semi-carbides: A first principles investigation. Journal of Physics and Chemistry of Solids 2009, 70 (1), 64-71.
35. Bull, C. L.; Kawashima, T.; McMillan, P. F.; et al, Crystal structure and high-pressure properties of g-Mo2N determined by neutron powder diffraction and X-ray diffraction. Journal of Solid State Chemistry 2006, 179 (6), 1762-1767.
36. Suetin, D.; Shein, I.; Ivanovskii, A., Electronic structure of cubic tungsten subnitride W2N in comparison to hexagonal and cubic tungsten mononitrides WN. Journal of Structural Chemistry 2010, 51 (2), 199-203. |