[1] Scanlon D O, Dunnill C W, Buckeridge J, et al. Band alignment of rutile and anatase TiO2[J]. Nat Mater, 2013,12(9): 798-801.
[2] Xiong G, Shao R, Droubay T C, et al. Photoemission electron microscopy of TiO2 anatase films embedded with rutile nanocrystals[J]. Advanced Functional Materials, 2007,17(13): 2133-2138.
[3] Kullgren J, Aradi B, Frauenheim T, et al. Resolving the controversy about the band alignment between rutile and anatase: the role of OH-/H+ adsorption[J]. Journal of Physical Chemistry C, 2015,119(38): 21952-21958.
[4] Sanches F F, Mallia G, Liborio L, et al. Hybrid exchange density functional study of vicinal anatase TiO2 surfaces[J]. Physical Review B, 2014,89(24): 245309.
[5] Wang Y, Ma J, Zhou J P, et al. First-principles study of the electronic structure of nonmetal-doped anatase TiO2[J]. Journal of the Korean Physical Society, 2016,68(3): 409-414.
[6] Unal H, Gunceler D, Gulseren O, et al. Hybrid functional calculated optical and electronic structures of thin anatase TiO2 nanowires with organic dye adsorbates[J]. Applied Surface Science, 2015,354: 437-442.
[7] Valentin C D, Selloni A. Bulk and surface polarons in photoexcited anatase TiO2[J]. The Journal of Physical Chemistry Letters, 2011,2(17): 2223-2228.
[8] Cheng J, Sprik M. Aligning electronic energy levels at the at the TiO2/H2O interface[J]. Physical Review B, 2010,82(8): 081406.
[9] Fujishima A, Honda K. Electrochemical Photolysis of water at a semiconductor electrode[J]. Nature, 1972,238(5358): 37-38.
[10] Gong X Q, Selloni A, Vittadini A. Density functional theory study of formic acid adsorption on anatase TiO2(001): Geometries, energetics, and effects of coverage, hydration, and reconstruction[J]. Journal of Physical Chemistry B, 2006,110(6): 2804-2811.
[11] Wang Y, Zhang H M, Liu P R, et al. Engineering the band gap of bare titanium dioxide materials for visible-light activity: a theoretical prediction[J]. RSC Advances, 2013,3(23): 8777-8782.
[12] Mao X C, Lang X F, Wang Z Q, et al. Band-gap states of TiO2(110): major contribution from surface defects[J]. Journal of Physical Chemistry Letters, 2013,4(22): 3839-3844.
[13] Rodriguez H F, Tranca D C, Szyja B M, et al. Water splitting on TiO2-based electrochemical cells: a small cluster study[J]. Journal of Physical Chemistry C, 2016,120(1): 437-449.
[14] Pan J, Liu G, Lu G Q, et al. On the true photoreactivity order of {001}, {010}, and {101} facets of anatase TiO2 crystals[J]. Angew Chem Int Ed Engl, 2011,50(9): 2133-2137.
[15] Cheng J, Sulpizi M, Sprik M. Redox potentials and pKa for benzoquinone from density functional theory based molecular dynamics[J]. The Journal of Chemical Physics, 2009,131(15): 154504.
[16] Trasatti S. The absolute electrode potential: an explanatory note[J]. Pure and Applied Chemistry, 1986,58(7): 955-966.
[17] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996,77(18): 3865-3868.
[18] Ehrlich S, Moellmann J, Reckien W, et al. System-dependent dispersion coefficients for the DFT-D3 Treatment of adsorption processes on ionic surfaces[J]. Chemphyschem, 2011,12(17): 3414-3420.
[19] Moellmann J, Ehrlich S, Tonner R, et al. A DFT-D study of structural and energetic properties of TiO2 modifications[J]. Journal of Physics-Condensed Matter, 2012,24(42): 424206.
[20] The CP2K developers group. http://cp2k.berlios.de (accessed Feb 2010).
[21] VandeVondel J, Krack M, Mohamed F, et al. QUICKSTEP: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach[J]. Computer Physics Communications, 2005,167(2): 103-128.
[22] Goedecker S, Teter M, Hutter J. Separable dual-space gaussian pseudopotentials[J]. Physical Review B, 1996,54(3): 1703-1710.
[23] Hartwigsen C, Goedecker S, Hutter J. Relativistic separable dual-space gaussian pseudopotentials from H to Rn[J]. Physical Review B, 1998,58(7): 3641-3662.
[24] VandeVondele J, Hutter J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases[J]. Journal of Chemical Physics, 2007,127(11): 114105.
[25] Cheng J, Sprik M. Acidity of the aqueous rutile TiO2(110) surface from density functional theory based molecular dynamics[J]. Journal of Chemical Theory and Computation, 2010,6(3): 880-889.
[26] Cheng J, Sulpizi M, VandeVondele J, et al. Hole localization and thermochemistry of oxidative dehydrogenation of aqueous rutile TiO2(110)[J]. ChemCatChem, 2012,4(5): 636-640.
[27] Sun C H, Liu L M, Selloni A, et al. Titania-water interactions: a review of theoretical studies[J]. Journal of Materials Chemistry, 2010,20(46): 10319-10334.
[28] He Y, Tilocca A, Dulub O, et al. Local ordering and electronic signatures of submonolayer water on anatase TiO2(101)[J]. Nat Mater, 2009,8(7): 585-589.
[29] Zhao W N, Liu Z P. Mechanism and active site of photocatalytic water splitting on titania in aqueous surroundings[J]. Chemical Science, 2014,5(6): 2256-2264.
[30] Arrouvel C, Digne M, Breysse M, et al. Effects of morphology on surface hydroxyl concentration: a DFT comparison of anatase-TiO2 and gamma-alumina catalytic supports[J]. Journal of Catalysis, 2004,222(1): 152-166.
[31] Sanchez V M, Sued M, Scherlis D A. First-principles molecular dynamics simulations at solid-liquid interfaces with a continuum solvent[J]. Journal of Chemical Physics, 2009,131(17): 174108.
[32] Li Y F, Selloni A. Theoretical study of interfacial electron transfer from reduced anatase TiO2(101) to adsorbed O2[J]. J Am Chem Soc, 2013,135(24): 9195-9199.
[33] He Y B, Dulub O, Cheng H Z, et al. Evidence for the predominance of subsurface defects on reduced anatase TiO2(101)[J]. Physical Review Letters, 2009,102(10): 106105.
[34] Hiemstra T, Venema P, VanRiemsdijk W H. Intrinsic proton affinity of reactive surface groups of metal (hydr)oxides: the bond valence principle[J]. Journal of Colloid and Interface Science, 1996,184(2): 680-692.
[35] Cheng J, Liu X, VandeVondele J, et al. Redox potentials and acidity constants from density functional theory based molecular dynamics[J]. Acc Chem Res, 2014,47(12): 3522-3529.
[36] Cheng J, Liu X D, Kattirtzi J A, et al. Aligning electronic and protonic energy levels of proton-coupled electron transfer in water oxidation on aqueous TiO2[J]. Angew. Chem., Int. Ed., 2014,53(45): 12046-12050.
[37] Cheng J, Liu X D, VandeVondele J, et al. Reductive hydrogenation of the aqueous rutile TiO2(110) surface[J]. Electrochimica Acta, 2015,179: 658-667.
[38] Cheng H Z, Selloni A. Hydroxide ions at the water/anatase TiO2(101) interface: structure and electronic states from first principles molecular dynamics[J]. Langmuir, 2010,26(13): 11518-11525. |