[1] Guerin S, Hayden B E, Lee C E, et al. Combinatorial electrochemical screening of fuel cell electrocatalysts[J]. Journal of Combinatorial Chemistry, 2004, 6(1): 149-158.[2] Stamenkovic V R, Fowler B, Mun B S, et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability[J]. Science, 2007, 315(5811): 493-497.[3] Greeley J, Mavrikakis M. Alloy catalysts designed from first-principles[J]. Nature Materials, 2004, 3(11): 810-815.[4] Greeley J, Stephens I E L, Bondarenko A S, et al. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts[J]. Nature Chemistry, 2009, 1(7): 552-556.[5] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.[6] Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Physical Review B, 1990, 41(11): 7892-7895.[7] Methfessel M, Paxton A T. High-precision sampling for Brillouin-zone integration in metals[J]. Physical Review B, 1989, 40(6): 3616-3621.[8] Baroni S, Dal Corso A, de Gironcoli S, et al. PWSCF and PHONON: Plane-wave pseudo-potential codes. http://www.pwscf.org, 2001.[9] Mukerjee S, Srinivasan, Soriaga M P. Role of structural and electronic properties of Pt and Pt alloys on electrocatalysis of oxygen reduction[J]. Journal of the Electrochemical Society, 1995, 142(5): 1409-1422.[10] Hammer B, N?rskov J K. Electronic factors determining the reactivity of metal surfaces[J]. Surface Science, 1995, 343(3): 211-220.[11] Hammer B, N?rskov J K. Why gold is the noblest of all the metals[J]. Nature, 1995, 376(6537): 238-240.[12] L?vvik O M. Surface segregation in palladium based alloys from density-functional calculations[J]. Surface Science, 2005, 583(1): 100-106.[13] N?rskov J K, Bligaard T, Logadottir A, et al. Universality in heterogeneous catalysis[J]. Journal of Catalysis, 2002, 209(2): 275-278.[14] Stamenkovic V R, Mun B S, Mayrhofer K J J, et al. Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces[J]. Journal of the American Chemical Society, 2006, 128(27): 8813-8819.[15] Stamenkovic V R, Mun B S, Arenz M, et al. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces[J]. Nature Materials, 2007, 6(3): 241-247.[16] Chen S, Ferreira P J, Sheng W C, et al. Enhanced activity for oxygen reduction reaction on “Pt3Co” nanoparticles: Direct evidence of percolated and sandwich-segregation structures[J]. Journal of the American Chemical Society, 2008, 130(42): 13818-13819.[17] Shirlaine K, Strasser P. Electrocatalysis on bimetallic surfaces: Modifying catalytic reactivity for oxygen reduction by voltammetric surface dealloying[J]. Journal of the American Chemical Society, 2007, 129(42): 12624-12625.[18] Dai Y, Ou L H, Liang W, et al. Efficient and superiorly durable Pt-lean electrocatalysts of Pt-W alloys for the oxygen reduction reaction[J]. Journal of Physical Chemistry C, 2011, 115(5): 2162-2168. |