电化学(中英文) ›› 2016, Vol. 22 ›› Issue (3): 219-230. doi: 10.13208/j.electrochem.151243
张玲玲1,2,董绍俊1,2*
收稿日期:
2015-12-28
修回日期:
2016-02-28
出版日期:
2016-06-28
发布日期:
2016-03-04
通讯作者:
董绍俊
E-mail:dongsj@ciac.ac.cn
基金资助:
国家自然科学基金项目(21375123),973项目(2011CB911002)和科技部专项(2013YQ170585)资助.
ZHANG Ling-ling1,2,DONG Shao-jun1,2*
Received:
2015-12-28
Revised:
2016-02-28
Published:
2016-06-28
Online:
2016-03-04
Contact:
DONG Shao-jun
E-mail:dongsj@ciac.ac.cn
摘要:
化石燃料的大量开采和利用所导致的能源与环境问题是当今社会可持续发展必须面对的两大挑战. 燃料电池通过电化学反应将燃料中的化学能直接转化为电能, 是目前清洁高效的可再生能源转化装置. 光助燃料电池将光响应成分引入到燃料电池中, 可以实现光能/电能和化学能/电能的双重转化, 从而有效提高能源利用效率, 是未来能源转化装置的发展方向, 在实际应用方面具有重要意义和广阔前景. 本文对光助燃料电池进行了简要综述, 重点介绍了我们小组近些年来在该领域的相关研究进展, 总结了目前存在的一些问题, 并对其发展趋势进行了展望.
中图分类号:
张玲玲,董绍俊. 光助燃料电池的研究进展[J]. 电化学(中英文), 2016, 22(3): 219-230.
ZHANG Ling-ling,DONG Shao-jun. Developments of Photo-Assisted Fuel Cells[J]. Journal of Electrochemistry, 2016, 22(3): 219-230.
[1] Boudghene Stambouli A and Traversa E. Fuel cells, an alternative to standard sources of energy[J]. Renewable and Sustainable Energy Reviews, 2002, 6(3): 295-304. [2] Kirubakaran A, Jain S and Nema R K. A review on fuel cell technologies and power electronic interface[J]. Renewable and Sustainable Energy Reviews, 2009, 13(9): 2430-2440. [3] Lianos P. Production of electricity and hydrogen by photocatalytic degradation of organic wastes in a photoelectrochemical cell: The concept of the photofuelcell: A review of a re-emerging research field[J]. Journal of Hazardous materials, 2011, 185(2-3): 575-590. [4] Hambourger M, Gervaldo M, Svedruzic D, et al. [FeFe]-hydrogenase-catalyzed H2 production in a photoelectrochemical biofuel cell[J]. Journal of the American Chemical Society, 2008, 130(6): 2015-2022. [5] de [6] Brune A, Jeong G, Liddell P A, et al. Porphyrin-sensitized nanoparticulate TiO2 as the photoanode of a hybrid photoelectrochemical biofuel cell[J]. Langmuir, 2004, 20(19): 8366-8371. [7] Deng L, Wang Y, Shang L, et al. A sensitive NADH and glucose biosensor tuned by visible light based on thionine bridged carbon nanotubes and gold nanoparticles multilayer[J]. Biosensors and Bioelectronics, 2008, 24(4): 951-957. [8] Deng L, Shang L, Wang Y, et al. Multilayer structured carbon nanotubes/poly-l-lysine/laccase composite cathode for glucose/O2 biofuel cell[J]. Electrochemistry Communications, 2008, 10(7): 1012-1015. [9] Amao Y and Takeuchi Y. Visible light-operated saccharide-O2 biofuel cell based on the photosensitization of chlorophyll derivative on TiO2 film[J]. International Journal of Hydrogen Energy, 2008, 33(11): 2845-2849. [10] Miyauchi M, Nakajima A, Watanabe T, et al. Photocatalysis and photoinduced hydrophilicity of various metal oxide thin films[J]. Chemistry of Materials, 2002, 14(6): 2812-2816. [11] Lee J S, Kato T, Fujishima A, et al. Photoelectrochemical oxidation of alcohols on polycrystalline zinc oxide[J]. Bulletin of the Chemical Society of [12] Nonomura K, Komatsu D, Yoshida T, et al. Dependence of the photoelectrochemical performance of sensitised ZnO on the crystalline orientation in electrodeposited ZnO thin films[J]. Physical Chemistry Chemical Physics, 2007, 9(15): 1843-1849. [13] Chen Q, Li J, Li X, et al. Visible-light responsive photocatalytic fuel cell based on WO3/W photoanode and Cu2O/Cu photocathode for simultaneous wastewater treatment and electricity generation[J]. Environmental Science & Technology, 2012, 46(20): 11451-11458. [14] Le Formal F, Gratzel M and Sivula K. Controlling photoactivity in ultrathin hematite films for solar water-splitting[J]. Advanced Functional Materials, 2010, 20(7): 1099-1107. [15] Monllor-Satoca D, Bartsch M, Fabrega C, et al. What do you do, titanium? Insight into the role of titanium oxide as a water oxidation promoter in hematite-based photoanodes[J]. Energy & Environmental Science, 2015, 8(11): 3242-3254. [16] Mor G K, Shankar K, Paulose M, et al. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells[J]. Nano Letter, 2005, 6(2): 215-218. [17] Jennings J R, Ghicov A, Peter L M, et al. Dye-sensitized solar cells based on oriented TiO2 nanotube arrays: Transport, trapping, and transfer of electrons[J]. Journal of the American Chemical Society, 2008, 130(40): 13364-13372. [18] Roy P, Berger S and Schmuki P. TiO2 nanotubes: Synthesis and applications[J]. Angewandte Chemie-international Edition, 2011, 50(13): 2904-2939. [19] Han L, Bai L, Zhu C, et al. Improving the performance of a membraneless and mediatorless glucose-air biofuel cell with a TiO2 nanotube photoanode[J]. Chemical Communications, 2012, 48(49): 6103-6105. [20] Zhang L L, Han L, Hu P, et al. TiO2 nanotube arrays: Intrinsic peroxidase mimetics[J]. Chemical Communications, 2013, 49(89): 10480-10482. [21] Han L, Guo S J, Wang P, et al. Light-driven, membraneless, hydrogen peroxide based fuel cells[J]. Advanced Energy Materials, 2015, 5(2): 4. [22] Sanli A E and Aytac A. Response to disselkamp: Direct peroxide/peroxide fuel cell as a novel type fuel cell[J]. International Journal of Hydrogen Energy, 2011, 36(1): 869-875. [23] Yamada Y, Yoshida S, Honda T, et al. Protonated iron-phthalocyanine complex used for cathode material of a hydrogen peroxide fuel cell operated under acidic conditions[J]. Energy & Environmental Science, 2011, 4(8): 2822-2825. [24] Yamada Y, Fukunishi Y, Yamazaki S, et al. Hydrogen peroxide as sustainable fuel: Electrocatalysts for production with a solar cell and decomposition with a fuel cell[J]. Chemical Communications, 2010, 46(39): 7334-7336. [25] Yamazaki S I, Siroma Z, Senoh H, et al. A fuel cell with selective electrocatalysts using hydrogen peroxide as both an electron acceptor and a fuel[J]. Journal of Power Sources, 2008, 178(1): 20-25. [26] Han L, Guo S J, Xu M, et al. Photoelectrochemical batteries for efficient energy recovery[J]. Chemical Communications, 2014, 50(87): 13331-13333. [27] Xie X, Ye M, Hsu P C, et al. Microbial battery for efficient energy recovery[J]. Proceedings of the [28] Li Z, Luo W, Zhang M, et al. Photoelectrochemical cells for solar hydrogen production: Current state of promising photoelectrodes, methods to improve their properties, and outlook[J]. Energy & Environmental Science, 2013, 6(2): 347-370. [29] O'Regan B and Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature, 1991, 353(6346): 737-740. [30] Rasmussen M, Shrier A and Minteer S D. High performance thylakoid bio-solar cell using laccase enzymatic biocathodes[J]. Physical Chemistry Chemical Physics, 2013, 15(23): 9062-9065. [31] Kirchhofer N D, Rasmussen M A, Dahlquist F W, et al. The photobioelectrochemical activity of thylakoid bioanodes is increased via photocurrent generation and improved contacts by membrane-intercalating conjugated oligoelectrolytes[J]. Energy & Environmental Science, 2015, 8(9): 2698-2706. [32] Yehezkeli O, Wilner O I, Tel-Vered R, et al. Generation of photocurrents by bis-aniline-cross-linked Pt nanoparticle/photosystem I composites on electrodes[J]. The Journal of Physical Chemistry B, 2010, 114(45): 14383-14388. [33] Yehezkeli O, Tel-Vered R, Wasserman J, et al. Integrated photosystem II-based photo-bioelectrochemical cells[J]. Nature Communications, 2012, 3: 742-748. [34] Wang F, Liu X and Willner I. Integration of photoswitchable proteins, photosynthetic reaction centers and semiconductor/biomolecule hybrids with electrode supports for optobioelectronic applications[J]. Advanced Materials, 2013, 25(3): 349-377. [35] Yehezkeli O, Tel-Vered R, Michaeli D, et al. Photosystem I (PSI)/photosystem II (PSII)-based photo-bioelectrochemical cells revealing directional generation of photocurrents[J]. Small, 2013, 9(17): 2970-2978. [36] Fortage J, Boschloo G, Blart E, et al. A p-type NiO-based dye-sensitized solar cell with an open-circuit voltage of 0.35 V[J]. Angewandte Chemie-international Edition, 2009, 48(24): 4402-4405. [37] Zhao X, Guo L B, Hu C Z, et al. Simultaneous destruction of nickel (II)-EDTA with TiO2/Ti film anode and electrodeposition of nickel ions on the cathode[J]. Applied Catalysis B-Environmental, 2014, 144: 478-485. [38] Siripala W, Ivanovskaya A, Jaramillo T F, et al. A Cu2O/TiO2 heterojunction thin film cathode for photoelectrocatalysis[J]. Solar Energy Materials and Solar Cells, 2003, 77(3): 229-237. [39] Li C L, Li Y B and Delaunay J J. A novel method to synthesize highly photoactive Cu2O microcrystalline films for use in photoelectrochemical cells[J]. ACS Applied Materials & Interfaces, 2014, 6(1): 480-486. [40] Wang P, Tang Y M, Wen X M, et al. Enhanced visible light-induced charge separation and charge transport in Cu2O -based photocathodes by urea treatment[J]. ACS Applied Materials & Interfaces, 2015, 7(36): 19887-19893. [41] Swain S, Thakur I, Chatterjee S, et al. Array of Cu2O nano-columns fabricated by oblique angle sputter deposition and their application in photo-assisted proton reduction[J]. Journal of Applied Physics, 2015, 117(2): 7. [42] Lepleux L, Chavillon B, Pellegrin Y, et al. Simple and reproducible procedure to prepare self-nanostructured NiO films for the fabrication of p-type dye-sensitized solar cells[J]. Inorganic Chemistry, 2009, 48(17): 8245-8250. [43] Lin C Y, Lai Y H, Mersch D, et al. Cu2O vertical bar niox nanocomposite as an inexpensive photocathode in photoelectrochemical water splitting[J]. Chemical Science, 2012, 3(12): 3482-3487. [44] Bachmeier A, Hall S, Ragsdale S W, et al. Selective visible-light-driven CO2 reduction on a p-type dye-sensitized NiO photocathode[J]. Journal of the American Chemical Society, 2014, 136(39): 13518-13521. [45] Sahara G, Abe R, Higashi M, et al. Photoelectrochemical CO2 reduction using a Ru(II)-Re(I) multinuclear metal complex on a p-type semiconducting NiO electrode[J]. Chemical Communications, 2015, 51(53): 10722-10725. [46] Fujishima Y, Okamoto S, Yoshiba M, et al. Photofuel cell comprising titanium oxide and bismuth oxychloride (BiO1-xCl1-y) photocatalysts that uses acidic water as a fuel[J]. Journal of Materials Chemistry A, 2015, 3(16): 8389-8404. [47] Cheng H, Huang B and Dai Y. Engineering BiOX (X = Cl, Br, I) nanostructures for highly efficient photocatalytic applications[J]. Nanoscale, 2014, 6(4): 2009-2026. [48] Jiang J, Zhao K, Xiao X, et al. Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets[J]. Journal of the American Chemical Society, 2012, 134(10): 4473-4476. [49] Jana?ky C, Endro?di B z, Berkesi O, et al. Visible-light-enhanced electrocatalytic activity of a polypyrrole/magnetite hybrid electrode toward the reduction of dissolved dioxygen[J]. The Journal of Physical Chemistry C, 2010, 114(45): 19338-19344. [50] Higashihara T and Ueda M. Precision synthesis of tailor-made polythiophene-based materials and their application to organic solar cells[J]. Macromolecular Research, 2013, 21(3): 257-271. [51] Winther-Jensen B, Winther-Jensen O, Forsyth M, et al. High rates of oxygen reduction over a vapor phase–polymerized PEDOT electrode[J]. Science, 2008, 321(5889): 671-674. [52] Bencsik G, Lukacs Z and Visy C. Photo-electrochemical sensor for dissolved oxygen, based on a poly(3,4-ethylenedioxythiophene)/iron oxalate hybrid electrode[J]. Analyst, 2010, 135(2): 375-380. [53] Lei Y, Wang G, Song S, et al. Synthesis, characterization and assembly of BiOCl nanostructure and their photocatalytic properties[J]. CrystEngComm, 2009, 11(9): 1857-1862. [54] Cheng H, Huang B, Wang P, et al. In situ ion exchange synthesis of the novel Ag/AgBr/BiOBr hybrid with highly efficient decontamination of pollutants[J]. Chemical Communications, 2011, 47(25): 7054-7056. [55] Shi C J, Yao Y, Yang Y, et al. Regioregular copolymers of 3-alkoxythiophene and their photovoltaic application[J]. Journal of the American Chemical Society, 2006, 128(27): 8980-8986. [56] Scharber M C, Mühlbacher D, Koppe M, et al. Design rules for donors in bulk-heterojunction solar cells-towards 10% energy-conversion efficiency[J]. Advanced Materials, 2006, 18(6): 789-794. [57] Uhrich C, Schueppel R, Petrich A, et al. Organic thin-film photovoltaic cells based on oligothiophenes with reduced bandgap[J]. Advanced Functional Materials, 2007, 17(15): 2991-2999. [58] Xin H, Kim F S and Jenekhe S A. Highly efficient solar cells based on poly(3-butylthiophene) nanowires[J]. Journal of the American Chemical Society, 2008, 130(16): 5424-5425. [59] Huisman C L, Huijser A, Donker H, et al. UV polymerization of oligothiophenes and their application in nanostructured heterojunction solar cells[J]. Macromolecules, 2004, 37(15): 5557-5564. [60] Khomenko V G, Barsukov V Z and Katashinskii A S. The catalytic activity of conducting polymers toward oxygen reduction[J]. Electrochimica Acta, 2005, 50(7-8): 1675-1683. [61] Zhang L L, Xu Z K, Lou B H, et al. Visible-light-enhanced electrocatalysis and bioelectrocatalysis coupled in a miniature glucose/air biofuel cell[J]. ChemSusChem, 2014, 7(9): 2427-2431. [62] Zhang L L, Bai L, Xu M, et al. High performance ethanol/air biofuel cells with both the visible-light driven anode and cathode[J]. Nano Energy, 2015, 11: 48-55. [63] Xia L, Bai J, Li J, et al. A highly efficient BiVO4/WO3/W heterojunction photoanode for visible-light responsive dual photoelectrode photocatalytic fuel cell[J]. Applied Catalysis B: Environmental, 2016, 183: 224-230. [64] Han L, Hu P, Xu Z K, et al. Electrodeposition and photoelectrochemical properties of p-type BiOIαCl1-α nanoplatelet thin films[J]. Electrochimica Acta, 2014, 115: 263-268. |
[1] | 陈浩杰, 唐美华, 陈胜利. 质子交换膜燃料电池阴极催化层疏水性优化[J]. 电化学(中英文), 2023, 29(9): 2207061-. |
[2] | 郑天龙, 欧明玉, 徐松, 毛信表, 王释一, 和庆钢. 一体式可再生燃料电池双功能氧催化剂的研究进展[J]. 电化学(中英文), 2023, 29(7): 2205301-. |
[3] | 韦宗楠, 曹敏纳, 曹荣. 瓜环基金属纳米催化剂的电化学研究进展[J]. 电化学(中英文), 2023, 29(1): 2215008-. |
[4] | 黄龙, 徐海超, 荆碧, 李秋霞, 易伟, 孙世刚. 质子交换膜燃料电池铂基催化剂研究进展[J]. 电化学(中英文), 2022, 28(1): 2108061-. |
[5] | 王睿卿, 隋升. PEMFC阴极催化层结构分析[J]. 电化学(中英文), 2021, 27(6): 595-604. |
[6] | 朱从懿, 李笑晖, 甘全全. 乙二醇基冷却液污染对质子交换膜燃料电池电堆的影响及恢复措施[J]. 电化学(中英文), 2021, 27(6): 698-704. |
[7] | 魏荣强, 李世安, 刘艺辉, 杨治, 沈秋婉, 杨国刚. 流道与肋宽比对气体扩散层性能影响的数值研究[J]. 电化学(中英文), 2021, 27(5): 579-585. |
[8] | 吴志鹏, 钟传建. 钯基氧还原和乙醇氧化反应电催化剂:关于结构和机理研究的一些近期见解[J]. 电化学(中英文), 2021, 27(2): 144-156. |
[9] | 庄志华, 陈卫. 原子数精确的金属纳米团簇在电催化领域的应用研究进展[J]. 电化学(中英文), 2021, 27(2): 125-143. |
[10] | 胡守训, 李亮, 杨俊豪, 李刘强, 靳志豪. 金属钯插层类水滑石的制备及其电催化乙醇的性能研究[J]. 电化学(中英文), 2021, 27(1): 100-107. |
[11] | 俞成荣, 朱建国, 蒋聪盈, 谷宇晨, 周晔欣, 李卓斌, 邬荣敏, 仲政, 官万兵. 基于电-化-热耦合理论对称双阴极固体氧化物燃料电池堆的电流与温度场数值模拟[J]. 电化学(中英文), 2020, 26(6): 789-796. |
[12] | 王佳, 黄秋安, 李伟恒, 王娟, 庄全超, 张久俊. 电化学阻抗谱弛豫时间分布基础[J]. 电化学(中英文), 2020, 26(5): 607-627. |
[13] | 李启浩, 王英明, 马华隆, 肖丽, 王功伟, 陆君涛, 庄林. 碱性膜燃料电池阳极碳酸化模型研究[J]. 电化学(中英文), 2020, 26(5): 731-739. |
[14] | 张焰峰, 肖菲, 陈广宇, 邵敏华. 基于非贵金属氧还原催化剂的质子交换膜燃料电池性能[J]. 电化学(中英文), 2020, 26(4): 563-572. |
[15] | 徐明俊, 刘杰, 葛君杰, 刘长鹏, 邢巍. 长春应化所金属氮碳氧还原催化剂的研究进展[J]. 电化学(中英文), 2020, 26(4): 464-473. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||