电化学(中英文) ›› 2016, Vol. 22 ›› Issue (3): 299-305. doi: 10.13208/j.electrochem.150914
廖 妮1*,卓 颖2,袁 若2
收稿日期:
2015-09-14
修回日期:
2015-11-10
出版日期:
2016-06-28
发布日期:
2015-11-18
通讯作者:
廖 妮
E-mail:liaoni123456789@163.com
作者简介:
廖 妮
基金资助:
国家自然科学基金项目(No. 21575116)资助
LIAO Ni1*, ZHUO Ying2, YUAN Ruo2
Received:
2015-09-14
Revised:
2015-11-10
Published:
2016-06-28
Online:
2015-11-18
Contact:
LIAO Ni
E-mail:liaoni123456789@163.com
About author:
LIAO Ni
摘要:
采用一锅合成法制备了新型的具有大比表面积的花状铂纳米颗粒(PtNFs),并构建了一个高灵敏电致化学发光(ECL)免疫传感器用于检测载脂蛋白A1(Apo-A1). 该PtNFs用于吸附二抗(anti-Apo-A1),并用葡糖糖氧化酶(GOD)封闭其表面的非特异性位点,最终制备了PtNFs@anti-Apo-A1@GOD信号探针. 当Apo-A1存在时,通过夹心免疫反应将制备的信号探针捕获于电极表面,并将所制得的电极置于含有葡萄糖的过硫酸根底液中检测. GOD催化葡萄糖产生H2O2,H2O2在PtNFs的催化下分解并在电极表面原位产生O2,所产生的O2能够催化过硫酸根-氧气体系的电致化学发光反应,放大发光信号,提高检测灵敏度. 该传感器在0.1 ng•mL-1 ~ 100 ng•mL-1范围内对Apo-A1有良好的线性响应,检测下限达到0.03 ng•mL-1,有望应用于临床分析诊断.
中图分类号:
廖 妮,卓 颖,袁 若. 基于花状铂纳米颗粒构建的电致化学发光免疫传感器用于检测载脂蛋白A1[J]. 电化学(中英文), 2016, 22(3): 299-305.
LIAO Ni, ZHUO Ying, YUAN Ruo. Electrochemiluminescence Immunosensor Based on Platinum Nanoparticles for the Determination of Apolipoprotein A1[J]. Journal of Electrochemistry, 2016, 22(3): 299-305.
[1] Zhang Z T, Pak J, Huang H Y, et al. Role of Ha-ras activation in superficial papillary pathway of urothelial tumor formation[J]. Oncogene, 2001, 20(12): 1973-1980. [2] Chen Y T, Chen C L, Chen H W, et al. Discovery of novel bladder cancer biomarkers by comparative urine proteomics using iTRAQ technology[J]. Journal of Proteome Research, 2010, 9(11): 5803-5815. [3] Li C Y, Li H J, Li J M, et al. Discovery of Apo-A1 as a potential bladder cancer biomarker by urine proteomics and analysis[J]. Biochemical and Biophysical Research Communications, 2014, 4(446): 1047-1052. [4] Li H J, Li C Y, Wu H L, et al. Identification of Apo-A1 as a biomarker for early diagnosis of bladder transitional cell carcinoma[J]. Proteome Science, 2011, 9: 21-23. [5] Wu Y, Shi H, Yuan L. A novel electrochemiluminescence immunosensor via polymerization-assisted amplification[J]. Chemical Communications, 2010, 46(41): 7763-7765. [6] Zanarini S, Rampazzo E, Ciana L D. Ru(bpy)3 covalently doped silica nanoparticles as multicenter tunable structures for electrochemiluminescence amplification[J]. Journal of the American Chemical Society, 2009, 131(6): 2260-2267. [7] Chen Z H, Liu Y, Wang Y Z, et al. Dynamic evaluation of cell surface N-Glycan expression via an electrogenerated chemiluminescence biosensor based on concanavalin A-Integrating gold-nanoparticle-modified Ru(bpy)32+-Doped silica nanoprobe[J]. Analytical Chemistry, 2013, 85(9): 4431-4438. [8] Hu L Z, Xu G B. Applications and trends in electrochemiluminescence[J]. Chemical Society Reviews, 2010, 39(8): 3275-3304. [9] Chen X M, Wu G H, Chen J M, et al. A novel electrochemiluminescence sensor based on bis(2,2′-bipyridine)-5-amino-1,10-phenanthroline ruthenium(II) covalently combined with graphite oxide[J]. Biosensors and Bioelectronics, 2010, 26(2): 872-876. [10] Tang D and Ren J. In situ amplified electrochemical immunoassay for carcinoembryonic antigen using horseradish peroxidase-encapsulated nanogold hollow microspheres as labels[J]. Analytical Chemistry, 2008, 80(21): 8064-8070. [11] Jian H and Ju H. Enzyme-quantum dots architecture for highly sensitive electrochemiluminescence biosensing of oxidase substrates[J]. Chemical Communications, 2007: 404-406. [12] Liu X, Ju H. Coreactant enhanced anodic electrochemiluminescence of CdTe quantum dots at low potential for sensitive biosensing amplified by enzymatic cycle[J]. Analytical Chemistry, 2008, 80(14): 5377-5382. [13] Liu X, Zhang Y, Lei J. Quantum dots based electrochemiluminescent immunosensor by coupling enzymatic amplification with self-produced coreactant from oxygen reduction[J]. Analytical Chemistry, 2010, 82(17): 7351-7356. [14] Qiu B, Lin Z, Wang J. An electrochemiluminescent biosensor for glucose based on the electrochemiluminescence of luminol on the nafion/glucose oxidase/poly(nickel(II) tetrasulfophthalocyanine)/multi-walled carbon nanotubes modified electrode[J]. Talanta, 2009, 78(1): 76-80. [15] Liu X, Niu W, Li H. Glucose biosensor based on gold nanoparticle-catalyzed luminol electrochemiluminescence on a three-dimensional sol-gel network[J]. Electrochemistry Communications, 2008, 10(9): 1250-1253. [16] Zhuo Y, Yuan P, Yuan R, et al. Bienzyme functionalized three-layer composite magnetic nanoparticles for electrochemical immunosensors[J]. Biomaterials, 2009, 30(12): 2284-2290. [17] Niu H, Yuan R, Chai Y, et al. Electrochemiluminescence of peroxydisulfate enhanced by L-Cysteine film for sensitive immunoassay[J]. Biosensors and Bioelectronics, 2011, 26(7): 3175-3180. [18] Lei Y M, Huang W X, Yuan R, et al. Electrochemiluminescence resonance energy transfer system: Mechanism and application in ratiometric aptasensor for lead ion[J]. Analytical Chemistry, 2015, 87(15): 7787-7794. [19] Lv X H, Pang X H, Li Y Y, et al. Electrochemiluminescent immune-modified electrodes based on Ag2Se@CdSe nanoneedles loaded with polypyrrole intercalated graphene for detection of CA72-4[J]. ACS Applied Materials & Interfaces, 2015, 7(1): 867-872. |
[1] | 沈茎, 王子明, 郑大江, 宋光铃. 钝化与过钝化状态下304不锈钢的点蚀行为研究[J]. 电化学(中英文), 2020, 26(6): 808-814. |
[2] | 邢逸飞, 李娜, 温晓芳, 韩宏彦, 崔敏, 张聪, 任聚杰, 籍雪平. 基于取代型多酸复合材料的多巴胺电化学检测[J]. 电化学(中英文), 2020, 26(6): 890-899. |
[3] | 杨纳川, 王玉, 帅毅, 陈康华. 低成本硫化物固态电解质Li6-xPS5-xClx的制备与性能研究[J]. 电化学(中英文), 2020, 26(6): 885-889. |
[4] | 晋通正, 杨雨萌, 范圣慧, 卫国英, 张昭. 溶解氧及波长对光助阳极沉积CeO2薄膜的影响[J]. 电化学(中英文), 2020, 26(6): 868-875. |
[5] | 娄景媛, 尤东江, 李雪菁. 全钒氧化还原液流电池用石墨毡电极的分步氧化活化[J]. 电化学(中英文), 2020, 26(6): 876-884. |
[6] | 吴凯. 锂硫电池正极材料的制备及工艺优化[J]. 电化学(中英文), 2020, 26(6): 825-833. |
[7] | 俞成荣, 朱建国, 蒋聪盈, 谷宇晨, 周晔欣, 李卓斌, 邬荣敏, 仲政, 官万兵. 基于电-化-热耦合理论对称双阴极固体氧化物燃料电池堆的电流与温度场数值模拟[J]. 电化学(中英文), 2020, 26(6): 789-796. |
[8] | 朱畅, 陈为, 宋艳芳, 董笑, 李桂花, 魏伟, 孙予罕. 反应条件对铜催化CO2电还原的影响[J]. 电化学(中英文), 2020, 26(6): 797-807. |
[9] | 王学良, 丛媛媛, 邱晨曦, 王盛杰, 秦嘉琪, 宋玉江. 核壳结构Ru@PtRu纳米花电催化剂的制备及碱性氢析出反应性能研究[J]. 电化学(中英文), 2020, 26(6): 815-824. |
[10] | 陈品松, 胡一涛, 张信义, 沈培康. 立体构造石墨烯材料对铅酸蓄电池负极性能影响的研究[J]. 电化学(中英文), 2020, 26(6): 834-843. |
[11] | 张泽阳, 孙岚, 林昌健. RGO-TiO2纳米管阵列的制备及其光电性能[J]. 电化学(中英文), 2020, 26(6): 844-849. |
[12] | 马武威, 常启刚, 史雄芳, 童延斌, 周立, 叶邦策, 鲁建江, 赵金虎. 基于纳米孔金与离子印迹聚合物结合的新型电化学传感器用于测定砷离子(III)[J]. 电化学(中英文), 2020, 26(6): 900-910. |
[13] | 段明涛, 蒙延双, 张红帅. Ni3S2@碳纳米管复合材料的制备及其储钠性能[J]. 电化学(中英文), 2020, 26(6): 850-858. |
[14] | 王存, 张维江, 何腾飞, 雷博, 史尤杰, 郑耀东, 罗伟林, 蒋方明. NCA三元锂离子电池分荷电状态循环的热特性和容量衰退研究[J]. 电化学(中英文), 2020, 26(6): 777-788. |
[15] | 王怡捷, 钮东方, 张新胜. 离子液体中18-冠醚-6添加剂对三价铬电沉积的影响[J]. 电化学(中英文), 2020, 26(6): 859-867. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||