电化学(中英文) ›› 2015, Vol. 21 ›› Issue (3): 253-267. doi: 10.13208/j.electrochem.141048
• 化学电源及其材料近期研究专辑(客座编辑:复旦大学 夏永姚教授) • 上一篇 下一篇
秦来芬,夏永高*,陈立鹏,胡华胜,肖锋,刘兆平*
收稿日期:
2014-11-18
修回日期:
2015-03-17
出版日期:
2015-06-28
发布日期:
2015-06-28
通讯作者:
夏永高,刘兆平
E-mail:xiayg@nimte.ac.cn, liuzp@nimte.ac.cn
基金资助:
中科院重点部署项目(No. KGZD-EW-202-4)、中科院科技服务网络计划(STS计划)项目(No. Y41006WS04)和宁波市创新团队(No. 2012B82001)资助
QIN Lai-fen, XIA Yong-gao*, CHEN Li-peng, HU Hua-sheng, XIAO Feng, LIU Zhao-ping*
Received:
2014-11-18
Revised:
2015-03-17
Published:
2015-06-28
Online:
2015-06-28
Contact:
XIA Yong-gao, LIU Zhao-ping
E-mail:xiayg@nimte.ac.cn, liuzp@nimte.ac.cn
摘要: 磷酸锰锂(LiMnPO4)正极材料具有能量密度高、成本低、安全性高和热稳定性好等优点,目前已成为锂电产业界研究的热点,有望成为继磷酸铁锂(LiFePO4)之后的新一代正极材料. 然而,磷酸锰锂的电子电导率和锂离子扩散率均很低,其电化学性能提高较为困难,至今尚无法制备出满足实际应用的高性能LiMnPO4正极材料,严重制约了LiMnPO4材料及其电池的发展. 本文从LiMnPO4的结构特性出发,对近年来国内外在碳包覆、离子掺杂、纳米化和控制晶体形貌等改性研究、全电池研究、专利情况以及商业化尝试等多方面进行了综述,并对LiMnPO4的发展进行了展望.
中图分类号:
秦来芬, 夏永高, 陈立鹏, 胡华胜, 肖锋, 刘兆平. 新一代动力锂离子电池磷酸锰锂正极材料的研究现状与展望[J]. 电化学(中英文), 2015, 21(3): 253-267.
QIN Lai-fen, XIA Yong-gao, CHEN Li-peng, HU Hua-sheng, XIAO Feng, LIU Zhao-ping. Research Status and Application Prospects of LiMnPO4 as A New Generation Cathode Material for Lithium-ion Batteries[J]. Journal of Electrochemistry, 2015, 21(3): 253-267.
[1]Pivko M, Bele M, Tchernychova E, et al. Synthesis of nanometric LiMnPO4 via a two-step technique[J]. Chemistry of Materials, 2012, 24(6): 1041-1047.[2]Doh C H, Kim D H, Kim H S, et al. Thermal and electrochemical behaviour of C/LixCoO2 cell during safety test[J]. Journal of Power Sources, 2008, 175(2): 881-885.[3]Liu Y J, Li X H, Guo H J, et al. Electrochemical performance and capacity fading reason of LiMn2O4/graphite batteries stored at room temperature[J]. Journal of Power Sources, 2009, 189(1): 721-725.[4]Doi T, Inaba M, Tsuchiya H, et al. Electrochemical AFM study of LiMn2O4 thin film electrodes exposed to elevated temperatures[J]. Journal of Power Sources, 2008, 180(1): 539-545.[5]Mateyshina Yu G, Lafont U, Uvarov N F, et al. Physical and electrochemical properties of LiFe0.5Mn1.5O4 spinel synthesized by different methods[J]. Russion Journal of Electrochemistry, 2009, 45(5): 602-605.[6]Yabuuchi N, Makimura Y, Ohzuku T. Solid-state chemistry and electrochemistry of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-Ion batteries[J]. Journal of Electrochemical Society, 2007, 154(4): A314-A321.[7]Wang X M(王希敏), Wang X Y(王先友), Luo X F(罗旭芳), et al. LiCo1/3Ni1/3Mn1/3O2 as cathode materials of lithium-ion battery[J]. Progress in Chemistry(化学进展), 2006, 18(2):1720-1724.[8]Aravindan V, Gnanaraj J, Lee Y S, et al. LiMnPO4—A next generation cathode material for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2013, 1(11): 3518-3539.[9]Zhou F, Cococcioni M, Kang K, et al. The Li intercalation potential of LiMPO4 and LiMSiO4 olivines with M = Fe, Mn, Co, Ni[J]. Electrochemistry Communications, 2004, 6(11): 1144-1148.[10]Zhou F, Kang K, Maxisch T, et al. The electronic structure and band gap of LiFePO4 and LiMnPO4[J]. Solid State Communications, 2004, 132(3/4): 181-186.[11]Shang S L, Wang Y, Mei Z G, et al. Lattice dynamics, thermodynamics, and bonding strength of lithium-ion battery materials LiMPO4 (M=Mn, Fe, Co, and Ni): A comparative first-principles study[J]. Journal of Materials Chemistry, 2012, 22(3): 1142-1149.[12]Chen J J, Vacchio M J, Wang S J, et al. The hydrothermal synthesis and characterization of olivines and related compounds for electrochemical applications[J]. Solid State Ionics, 2008, 178(31/32): 1676-1693.[13]Yonemura M, Yamada A, Kanno R, et al. Comparative kinetic study of olivine LixMPO4 (M = Fe, Mn) [J]. Journal of The Electrochemical Society, 2004, 151(9): A1352-A1356.[14]Wan Y(万洋), Zheng Q J(郑荞佶), Lin D M(赁敦敏). Recent development of LiMnPO4 as cathode materials of lithium-ion batteries[J]. Acta Chimica Sinica (化学学报), 2014, 72(5): 537-551.[15]Fisher C, Prieto V, Islam M. Lithium battery materials LiMPO4(M = Mn, Fe, Co, and Ni): Insights into defect association, transport mechanisms, and doping behavior[J]. Chemistry of Materials, 2008, 20(18): 5907-5915.[16]Gardiner G, Islam M. Anti-Site defects and ion migration in the LiFe0.5Mn0.5PO4 mixed-metal cathode material[J]. Chemistry of Materials, 2010, 22(3): 1242-1248.[17]Islam M, Driscoll D, Fisher C, et al. Atomic-Scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material[J]. Chemistry of Materials, 2005, 17(20): 5085-5092.[18]Chen J, Vacchio M, Wang S, et al. The hydrothermal synthesis and characterization of olivines and related compounds for electrochemical applications[J]. Solid State Ionics, 2008, 178(31/32): 1676-1693.[19]Whittingham M, Yanning S, Lutta S, et al. Some transition metal (oxy)phosphates and vanadium oxides for lithium batteries[J]. Journal of Materials Chemistry, 2005, 15(33): 3362-3379.[20]Dong Y Z, Wang L, Zhang S L, et al. Two-phase interface in LiMnPO4 nanoplates[J]. Journal of Power Sources, 2012, 215: 116-121.[21]Yamada A, Hosoya M, Chung S, et al. Olivine-type cathodes achievements and problems[J]. Journal of Power Sources, 2003, 119-121: 232-238.[22]Delacourt C, Laffont L, Bouchet R, et al. Toward understanding of electrical limitations (electronic, ionic) in LiMPO4 (M = Fe, Mn) electrode materials[J]. Journal of The Electrochemical Society, 2005, 152(5): A913-A921.[23]Yi H H(易惠华), Wu H X(吴海霞), Dai Y N(戴永年), et al. Research progresses on the improvement of the electrochemical performance of LiMnPO4 as cathode for rechargeable lithium ion battery[J]. Journal of Synthetic Crystals(人工晶体学报), 2012, 41: 295-300.[24]Li S(李珊珊), Su Z(粟智), Zhang Y(张艳慧). Progress on LiMnPO4 positive materials for lithium-ion batteries[J]. Chinese Journal of Spectroscopy Laboratory(光谱实验室), 2012, 29(6): 3822-3829.[25]Li G, Azuma H, Tohda M. LiMnPO4 as the cathode for lithium batteries[J]. Electrochemical and Solid-State Letters, 2002, 5(6): A135-A137.[26]Oh S, Sun Y. Improving the electrochemical performance of LiMn0.85Fe0.15PO4-LiFePO4 core-shell materials based on an investigation of carbon source effect[J]. Journal of Power Sources, 2013, 244: 663-667.[27]Zaghib K, Trudeau M, Guerfi A, et al. New advanced cathode material: LiMnPO4 encapsulated with LiFePO4[J]. Journal of Power Sources, 2012, 204: 177-181.[28]Oh S, Oh S, Yoon C, et al. High-performance carbon-LiMnPO4 nanocomposite cathode for lithium batteries[J]. Advanced Functional Materials, 2010, 20(19): 3260-3265.[29]Dominko R, Bele M, Gaberscek M, et al. Porous olivine composites synthesized by sol-gel technique[J]. Journal of Power Sources, 2006, 153(2): 274-280.[30]Wang Y R, Yang Y F, Yang Y B, et al. Enhanced electrochemical performance of unique morphological LiMnPO4/C cathode material prepared by solvothermal method[J]. Solid State Communications, 2010, 150(1/2): 81-85.[31]Wang Y, Yang Y, Yang Y, et al. Fabrication of microspherical LiMnPO4 cathode material by a facile one-step solvothermal process[J]. Materials Research Bulletin, 2009, 44(11): 2139-2142.[32]Murugan A V, Muraliganth T, Manthiram A. One-pot microwave-hydrothermal synthesis and characterization of carbon-coated LiMPO4 (M = Mn, Fe, and Co) cathodes[J]. Journal of The Electrochemical Society, 2009, 156(2): A79-A83.[33]Mizuno Y, Kotobuki M, Munakata H, et al. Effect of carbon source on electrochemical performance of carbon coated LiMnPO4 cathode[J]. Journal of the Ceramic Society of Japan, 2009, 117(11): 1225-1228.[34]Wang H L, Yang Y, Liang Y Y, et al. LiMn1-xFexPO4 nanorods grown on graphene sheets for ultrahigh-rate-performance lithium ion batteries[J]. Angewandte Chemie-International Edition, 2011, 50(32): 7364-7368.[35]Qin Z H, Zhou X F, Xia Y G, et al. Morphology controlled synthesis and modification of high-performance LiMnPO4 cathode materials for Li-ion batteries[J]. Journal of Materials Chemistry, 2012, 22(39): 21144-21153.[36]Li H Q, Zhou H S. Enhancing the performances of Li-ion batteries by carbon-coating: Present and future[J]. Chemical Communications, 2012, 48(9): 1201-1217.[37]Clemens O, Haberkorn R, Springborg M, et al. On aliovalent substitution on the Li site in LiMPO4: An X-ray diffraction study of the systems LiMPO4-M1.5PO4(= LixM1.5-x/2PO4; M = Ni, Co, Fe, Mn)[J]. Zeitschrift fur Anorganische und Allgemeine Chemie, 2014, 640(1): 173-183.[38]Hu C L, Yi H H, Wang F X, et al. Boron doping at P-site to improve electrochemical performance of LiMnPO4 as cathode for lithium ion battery[J]. Journal of Power Sources, 2014, 255: 355-359.[39]Wang D, Ouyang C, Drézen T, et al. Improving the electrochemical activity of LiMnPO4 via Mn-site substitution[J]. Journal of The Electrochemical Society, 2010, 157(2): A225-A229. [40]Hong J, Wang F, Graetz J, et al. LiFexMn1-xPO4: A cathode for lithium-ion batteries[J]. Journal of Power Sources, 2011, 196: 3659-3663.[41]Fang H S, Yi H H, Hu C L, et al. Effect of Zn doping on the performance of LiMnPO4 cathode for lithium ion batteries[J]. Electrochimica Acta, 2012, 71: 266-269..[42]Shiratsuchi T, Okada S, Doi T, et al. Cathodic performance of LiMn1-xMxPO4 (M=Ti, Mg and Zr) annealed in an inert atmosphere[J]. Electrochimica Acta, 2009, 54: 3145-3151.[43]Lee J, Park M, Anass B, et al. Electrochemical lithiation and delithiation of LiMnPO4: Effect of cation substitution[J]. Electrochimica Acta, 2010, 55: 4162-4169.[44]Yang G, Ni H, Liu H D, et al. The doping effect on the crystal structure and electrochemical properties of LiMnxM1-xPO4 (M=Mg, V, Fe, Co, Gd)[J]. Journal of Power Sources, 2011, 196: 4747-4755.[45]Qin L F, Xia Y G, Cao H L, et al. Effects of Ti additive on the structure and electrochemical performance of LiMnPO4 cathode material[J]. Electrochimica Acta, 2014, 123: 240-247.[46]Martha S, Grinblat J, Haik O, et al. LiMn0.8Fe0.2PO4: An advanced cathode material for rechargeable lithium batteries[J]. Angewandte Chemie-International Edition, 2009, 48(45): 8559-8563.[47]Sun Y, Oh S, Park H, et al. Micrometer-sized, nanoporous, high-volumetric-capacity LiMn0.85Fe0.15PO4 cathode material for rechargeable lithium-ion batteries[J]. Advanced Materials, 2011, 23(43): 5050-5054.[48]Hu L J, Qiu B, Xia Y G, et al. Solvothermal synthesis of Fe-doping LiMnPO4 nanomaterials for Li-ion batteries[J]. Journal of Power Sources, 2014, 248: 246-252.[49]Wang L, Zhang L W, Li J J, et al. First-principles study of doping in LiMnPO4[J]. International Journal of Electrochemical Science, 2012, 7(4): 3362-3370.[50]Qin L F, Xia Y G, Qiu B, et al. Synthesis and electrochemical performances of (1-x)LiMnPO4·xLi3V2(PO4)3/C composite cathode materials for lithium ion batteries[J]. Journal of Power Sources, 2013, 239: 144-150.[51]Gutierrez A, Qiao R, Wang L, et al. High-capacity, aliovalently doped olivine LiMn1-3 x/2Vx?x/2PO4 cathodes without carbon coating[J]. Chemistry of Materials, 2014, 26(9): 3018-3026.[52]Delacourt C, Poizot P, Morcrette M, et al. One-step low-temperature route for the preparation of electrochemically active LiMnPO4 powders[J]. Chemistry of Materials, 2004, 16(1): 93-99.[53]Drezen T, Kwon N, Bowen P, et al. Effect of particle size on LiMnPO4 cathodes[J]. Journal of Power Sources, 2007, 174: 949-953.[54]Kang B, Ceder G. Electrochemical performance of LiMnPO4 synthesized with off-stoichiometry[J]. Journal of The Electrochemical Society, 2010, 157(7): A808-A811.[55]Rangappa D, Sone K, Zhou Y, et al. Size and shape controlled LiMnPO4 nanocrystals by a supercritical ethanol process and their electrochemical properties[J]. Journal of Materials Chemistry, 2011, 21(39): 15813-15818.[56]Zhao M, Fu Y, Xu N, et al. High performance LiMnPO4/C prepared by a crystallite size control method[J]. Journal of Materials Chemistry A, 2014, 2(36): 15070-15077.[57]Ji H M, Yang G, Ni H, et al. General synthesis and morphology control of LiMnPO4 nanocrystals via microwave-hydrothermal route[J]. Electrochimica Acta, 2011, 56(9): 3093-3100.[58]Guo H, Wu C Y, Xie J, et al. Controllable synthesis of high-performance LiMnPO4 nanocrystals by a facile one-spot solvothermal process[J]. Journal of Materials Chemistry A, 2014, 2(27): 10581-10588.[59]Pieczonka N, Liu Z, Huq A, et al. Comparative study of LiMnPO4/C cathodes synthesized by polyol and solid-state reaction method s for Li-ion batteries[J]. Journal of Power Sources, 2013, 230: 122-129.[60]Choi D, Wang D, Bae I, et al. LiMnPO4 nanoplate grown via solid-state reaction in molten hydrocarbon for Li-ion battery cathode[J]. Nano Letters, 2010, 10(8): 2799-2805.[61]Dinh H C, Mho S I, Kang Y, et al. Large discharge capacities at high current rates for carbon-coated LiMnPO4 nanocrystalline cathodes[J]. Journal of Power Sources, 2013, 244: 189-195.[62]Ran L B, Liu X Y, Tang Q W, et al. Grinding aid-assisted preparation of high-performance carbon-LiMnPO4[J]. Electrochimica Acta, 2013, 114: 14-20.[63]Kwon N H, Fromm K M. Enhanced electrochemical performance of < 30 nm thin LiMnPO4 nanorods with a reduced amount of carbon as a cathode for lithium ion batteries[J]. Electrochimica Acta, 2012, 69: 38-44.[64]Yamada A, Nishimura S, Koizumi H, et al. Intemediate phases in LixFePO4[J]. Solid State Ionics, 2006, 972: 257-264.[65]Amin R, Balaya P, Maier J. Anisotropy of electronic and ionic transport in LiFePO4 single crystals[J]. Electrochemical and Solid-State Letters, 2007, 10(1): A13-A16.[66]Wang D, Buqa H, Crouzet M, et al. High-performance, nano-structured LiMnPO4 synthesized via a polyol method[J]. Journal of Power Sources, 2009, 189: 624-628. [67]Rui X H, Zhao X X, Lu Z Y, et al. Olivine-type nanosheets for lithium ion battery cathodes[J]. ACS Nano, 2013, 7(6): 5637-5646.[68]Barpanda P, Djellab K, Recham N, et al. Direct and modified ionothermal synthesis of LiMnPO4 with tunable morphology for rechargeable Li-ion batteries[J]. Journal of Materials Chemistry, 2011, 21(27): 10143-10152.[69]Su J, Wei B Q, Rong J P, et al. A general solution-chemistry route to the synthesis LiMPO4 (M = Mn, Fe, and Co) nanocrystals with [010] orientation for lithium ion batteries[J]. Journal of Solid State Chemistry, 2011, 184: 2909-2919.[70]Wang F, Yang J, Gao P F, et al. Morphology regulation and carbon coating of LiMnPO4 cathode material for enhanced electrochemical performance[J]. Journal of Power Sources, 2011, 196(23): 10258-10262.[71]Guo B B, Ruan H C, Zheng C, et al. Hierarchical LiFePO4 with a controllable growth of the (010) facet for lithium-ion batteries[J]. Scientific Reports, 2013, 3: 2788-2793.[72]Zou Q Q, Zhu G N, Xia Y Y. Preparation of carbon-coated LiFe0.2Mn0.8PO4 cathode material and its application in a novel battery with Li4Ti5O12 anode[J]. Journal of Power Sources, 2012, 206: 222-229.[73]Martha S K, Haik O, Borgel V, et al. Li4Ti5O12/LiMnPO4 lithium-ion battery systems for load leveling application[J]. Journal of The Electrochemical Society, 2011, 158(7): A790-A797.[74]Jia X P(贾旭平). The development prospects of lithium ion battery materials[J]. Chinese Journal of Power Sources(电源技术), 2014, 138(5): 803-804.[75]Barker J, Saidi M, Saidi M Y, et al. Novel lithium-containing phosphate for use in lithium batteries - where intercalation and de-intercalation of lithium ions takes place at the lithium-containing phosphate electrode during the charge and discharge cycle: US, 5871866[P]. 2004-05-06.[76]Goodenough J B, Padhi A, Nanjundaswamy K S, et al. Cathode materials for rechargeable secondary lithium batteries - comprising transition metal compounds with ordered olivine or rhombohedral NASICON structure containing phosphate ions: US, 5910382[P]. 2010-03-11.[77]Li G, Yamada A, Li G H. Positive electrode active material for non-aqueous electrolyte cell contains manganese-based phosphoric compound having particular proportion of manganese: JP, 2001307732[P]. 2010-01-07.[78]Li G. Positive electrode material and cell comprising the same: JP, 2002151072[P]. 2010-05-05.[79]Goto S. Manufacture of positive electrode active material for non-aqueous electrolyte battery, involves mixing lithium phosphate, manganous phosphate and phosphates containing specific metals, and baking mixture at specific temperature: JP, 2004063270-A[P]. 2004-02-26.[80]Goto S. Anode active material for anode used in non-aqueous electrolyte battery, contains specific compound having olivine structure: JP, 2004063422-A[P]. 2004-02-26.[81]Yoshida J, Jyun Y, Jun Y. Positive electrode active material with olivine structure, for use in lithium secondary battery, comprises lithium (sodium, potassium or rubidium) manganese phosphate with larger inter-layer interval of manganese oxide layers: JP, 2009104970[P]. 2009-05-14.[82]Isono M, Drezen T, Exnar I, et al. Manufacture of lithium manganese phosphate involves obtaining added dispersion solution, adjusting pH of added dispersion solution, and synthesizing by reacting pH-adjusted dispersion solution by heating under pressure condition: JP, 2007119304[P]. 2007-05-17.[83]Suzuki H, Otsuki K, Hirano M, et al. Active material, useful in lithium-ion secondary battery and as an electrode material for electrochemical devices e.g. metallic lithium secondary batteries and electrochemical capacitor, comprises crystallite of lithium manganese phosphate: JP, 2011009190-A[P]. 2010-12-02.[84]Kawamoto M, Tabuchi T, Inamasu N, et al. Active material used for positive electrode of lithium secondary battery for e.g. mobile telephone, comprises lithium-manganese phosphate in which portion of manganese contains cobalt-substituted compound in below specified amount: JP, 2010287450-A[P]. 2010-12-24.[85]Kono K, Toyama T. Positive electrode active material for lithium ion secondary battery, comprises lithium manganese phosphate aggregate containing secondary particles formed by adhering primary particles on lithium manganese phosphate: JP, 2010073520-A[P]. 2010-04-02.[86]Hieda H, Kihara N, Yanagita Y. Positive electrode active material for lithium ion secondary battery, comprises lithium manganese phosphate aggregate containing secondary particles formed by adhering primary particles on lithium manganese phosphate: JP, 2006318607-A[P]. 2006-11-24.[87]Xia Y G(夏永高), Liu Z P(刘兆平), Chen L P(陈立鹏), et al. A lithium manganese phosphate cathode material and its preparation method: CN, 201110271031.7[P]. 2012-09-26.[88]Xia Y G(夏永高), Liu Z P(刘兆平), Chen L P(陈立鹏). A lithium ion battery cathode material, its preparation method, and lithium ion batteries: CN, 201210383549.4[P]. 2013-01-02[89]Xia Y G(夏永高), Liu Z P(刘兆平), Chen L P(陈立鹏). A preparation method of lithium ion battery cathode material: CN, 201210134119.9[P]. 2012-09-12.[90]Liu Z P(刘兆平) , Xia Y G(夏永高), Chen L P(陈立鹏). Lithium ion battery cathode material and its preparation method: CN, 201210551815.X[P]. 2013-03-20.[91]Liu Z P(刘兆平) , Xia Y G(夏永高), Chen L P(陈立鹏). A lithium manganese phosphate cathode material and its preparation method: CN, 201210473364.2[P]. 2013-02-13.[92]Liu Z P(刘兆平) , Xia Y G(夏永高), Chen L P(陈立鹏). A preparation method of lithium ion battery cathode material: CN, 201210556657.7[P]. 2013-04-03. |
[1] | 赵刚, 龚正良, 李益孝, 杨勇. 氧化钨和磷钨酸对LiNi0.96Co0.02Mn0.02O2材料的表面包覆改性研究[J]. 电化学(中英文), 2023, 29(10): 2204281-. |
[2] | 宋亚杰, 孙雪, 任丽萍, 赵雷, 孔凡鹏, 王家钧. 同步辐射表征技术在金属空气电池研究中的应用[J]. 电化学(中英文), 2022, 28(3): 2108461-. |
[3] | 胡炳文, 李超, 耿福山, 沈明. 金属离子电池中的磁共振:从核磁共振(NMR)到电子顺磁共振(EPR)[J]. 电化学(中英文), 2022, 28(2): 2108421-. |
[4] | 郭瑞琪, 吴锋, 王欣然, 白莹, 吴川. 多电子反应材料推动高能量密度电池发展:材料与体系创新[J]. 电化学(中英文), 2022, 28(12): 2219011-. |
[5] | 骆晨旭, 师晨光, 余志远, 黄令, 孙世刚. 富锂锰基层状正极材料的合成及其首周过充下的结构演化[J]. 电化学(中英文), 2022, 28(1): 2006131-. |
[6] | 滕久康, 王庆杰, 张亮, 张红梅, 陈晓涛, 张鹏, 赵金保. 热处理时间对锂电池正极材料Cr8O21的影响[J]. 电化学(中英文), 2021, 27(6): 689-697. |
[7] | 吴凯. 锂硫电池正极材料的制备及工艺优化[J]. 电化学(中英文), 2020, 26(6): 825-833. |
[8] | 王存, 张维江, 何腾飞, 雷博, 史尤杰, 郑耀东, 罗伟林, 蒋方明. NCA三元锂离子电池分荷电状态循环的热特性和容量衰退研究[J]. 电化学(中英文), 2020, 26(6): 777-788. |
[9] | 王杜丹, 王非, 翟欢欢, 李玉鹏, 杨纳川, 陈康华. 富锂层状正极材料Li2MnO3的表面改性及其电化学性能研究[J]. 电化学(中英文), 2020, 26(2): 289-297. |
[10] | 王非, 翟欢欢, 王杜丹, 李玉鹏, 陈康华. Sn-Cl共掺杂的锂离子正极材料Li2MnO3的结构及电化学性能研究[J]. 电化学(中英文), 2020, 26(1): 148-155. |
[11] | 黄云辉. 钴酸锂正极材料与锂离子电池的发展 ——2019年诺贝尔化学奖解读[J]. 电化学(中英文), 2019, 25(5): 609-613. |
[12] | 王凡凡, 刘晓斌, 陈龙, 陈程成, 刘永畅, 范丽珍. 室温钠离子电池关键材料研究进展[J]. 电化学(中英文), 2019, 25(1): 55-76. |
[13] | 高睿, 王俊凯, 胡中波, 刘向峰. 锂-空气电池正极催化剂表界面调控及构效关系研究进展[J]. 电化学(中英文), 2019, 25(1): 77-88. |
[14] | 谢永纯,王成,蒋芳,杨洋,苏静,龙云飞,文衍宣. 钠锰比对NaxMnO2的性能和钠离子脱嵌过程的影响[J]. 电化学(中英文), 2018, 24(4): 375-384. |
[15] | 关小云,洪朝钰,朱建平,王伟立,李益孝,杨勇. 高首效富镍正极材料LiNi0.6Co0.2Mn0.2O2的合成及电化学性能研究[J]. 电化学(中英文), 2018, 24(1): 56-62. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||