[1] Travitsky N, Ripenbein T, Golodnitsky D, et al. Pt-, PtNi- and PtCo-supported catalysts for oxygen reduction in PEM fuel cells[J]. Journal of Power Sources, 2006, 161(2): 782-789.[2] Shevchenko E V, Talapin D V, Schnablegger H, et al. Study of nucleation and growth in the organometallic synthesis of magnetic alloy nanocrystals: The role of nucleation rate in size control of CoPt3 nanocrystals[J]. Journal of the American Chemical Society, 2003, 125(30): 9090-9101.[3] Aguilera-Granja F, Longo R C, Gallego L J, et al. Structural and magnetic properties of X12Y (X, Y = Fe, Co, Ni, Ru, Rh, Pd, and Pt) nanoalloys[J]. Journal of Chemical Physics, 2010, 132(18): 184507.[4] Hwang S J, Kim S K, Lee J G, et al. Role of electronic perturbation in stability and activity of Pt-based alloy nanocatalysts for oxygen reduction[J]. Journal of the American Chemical Society, 2012, 134(48): 19508-19511.[5] Xu C, Sun F, Gao H, et al. Nanoporous platinum-cobalt alloy for electrochemical sensing for ethanol, hydrogen peroxide, and glucose[J]. Analytica Chimica Acta, 2013, 780: 20-27.[6] Lu G Q, Sun S G, Chen S P, et al. Electrode processes VII[C]. Wieckowski A, Itaya K, eds., The Electrochemical Society, Inc., 1996: Proceedings PV 96, 136.[7] Lu G Q, Sun S G, Chen S P, et al. Novel properties of dispersed Pt and Pd thin layers supported on GC for CO adsorption studied using in situ MS-FTIR reflection spectroscopy[J]. Journal of Electroanalytical Chemistry, 1997, 421(1/2): 19-23.[8] Lu G Q, Sun S G, Cai L R, et al. In situ FTIR spectroscopic studies of adsorption of CO, SCN-, and poly(o-phenylenediamine) on electrodes of nanometer thin films of Pt, Pd, and Rh: Abnormal infrared effects (AIREs)[J]. Langmuir, 2000, 16(2): 778-786.[9] Zheng M S, Sun S G. In situ FTIR spectroscopic studies of CO adsorption on electrodes with nanometer-scale thin films of ruthenium in sulfuric acid solutions[J]. Journal of Electroanalytical Chemistry, 2001, 500(1/2): 223-232.[10] Wang H C, Sun S G, Yan J W, et al. In situ STM studies of electrochemical growth of nanostructured Ni films and their anomalous IR properties[J]. Journal of Physical Chemistry B, 2005, 109(10): 4309-4316.[11] Chen Q S, Sun S G, Yan J W, et al. Electrochemical preparation and structural characterization of Co thin films and their anomalous IR properties[J]. Langmuir, 2006, 22(25): 10575-10583.[12] Chen Z, Sun S G, Ding N, et al. Abnormal infrared effects of nanometer scale thin film material of PtPd alloy in CO adsorption[J]. Chinese Science Bulletin, 2001, 46(17): 1439-1442.[13] Chen Q S, Zhou Z Y, Guo G C, et al. Electrodeposition of nanostructured CoNi thin films and their anomalous infrared properties[J]. Electrochimica Acta, 2013, 113: 694-705.[14] Lin W F, Sun S G. In situ FTIRS investigations of surface processes of Rh electrode--novel observation of geminal adsorbates of carbon monoxide on Rh electrode in acid solution[J]. Electrochimica Acta, 1996, 41(6): 803-809.[15] Cuesta A, Gutierrez C. Study by Fourier transform infrared spectroscopy of the adsorption of carbon monoxide on a cobalt electrode at pH 3-14[J]. Langmuir, 1998, 14(12): 3390-3396.[16] Chen Q S, Sun S G, Zhou Z Y, et al. CoPt nanoparticles and their catalytic properties in electrooxidation of CO and CH(3)OH studied by in situ FTIRS[J]. Physical Chemistry Chemical Physics, 2008, 10(25): 3645-3654.[17] Zheng M S, Sun S G, Chen S P. Abnormal infrared effects and electrocatalytic properties of nanometer scale thin film of PtRu alloys for CO adsorption and oxidation[J]. Journal of Applied Electrochemistry, 2001, 31(7): 749-757.[18] Chen W, Sun S G, Zhou Z Y, et al. IR optical properties of Pt nanoparticles and their agglomerates investigated by in situ FTIRS using CO as the probe molecule[J]. Journal of Physical Chemistry B, 2003, 107(36): 9808-9812.[19] Wu C X, Lin H, Chen Y J, et al. Abnormal IR effects of Pt nanostructured surfaces upon CO chemisorption due to interaction and electron-hole damping[J]. Journal of Chemical Physics, 2004, 121(3): 1553-1556.[20] Su Z F, Sun S G, Wu C X, et al. Study of anomalous infrared properties of nanomaterials through effective medium theory[J]. Journal of Chemical Physics, 2008, 129(4): 044707.[21] Lambert D K. Vibrational Stark effect of adsorbates at electrochemical interfaces[J]. Electrochimica Acta, 1996, 41(5): 623-630. |