电化学(中英文) ›› 2023, Vol. 29 ›› Issue (9): 2207081. doi: 10.13208/j.electrochem.2207081
所属专题: “电催化和燃料电池”专题文章
高玲玉a, 杨琳a, 王晨辉a, 单桂轩a, 霍欣怡a, 张梦飞a, 李韡a,b, 张金利a,b,*()
收稿日期:
2022-07-08
修回日期:
2023-02-15
接受日期:
2023-02-21
出版日期:
2023-09-28
发布日期:
2023-02-27
Ling-Yu Gaoa, Lin Yanga, Chen-Hui Wanga, Gui-Xuan Shana, Xin-Yi Huoa, Meng-Fei Zhanga, Wei Lia,b, Jin-Li Zhanga,b,*()
Received:
2022-07-08
Revised:
2023-02-15
Accepted:
2023-02-21
Published:
2023-09-28
Online:
2023-02-27
Contact:
*Tel: (86-22)27403389, E-mail: 摘要:
电解槽的结构和运行参数对碱性水电解的性能起着重要作用。针对工业碱性水电解槽紧凑的装配结构,特别是在电流密度大于5000 A·m-2时,本文首次建立了耦合电场和欧拉-欧拉k-ε湍流流场的三维数值模型,以准确模拟碱性水电解槽的性能。将模拟结果与实验数据进行比较,验证了模型的准确性。通过电解槽内部电场和流场特性的反馈,确定了适合的浓度、流量的操作条件和流道结构的优化设计方法。适当增加电解液浓度和流速有利于降低槽电压。KOH水溶液的最佳浓度和流速分别为6.0 - 8.0 mol·L-1和30.0 - 45.0 mL·min-1。随着电极与隔膜距离的增加,欧姆过电压显著增加;流道高度和双极板上导流柱的排列方式对电压的影响微弱,但三角形排列的导流柱和流道高度的增加有利于提高流体的分布均匀度,适当增加导流柱之间的距离有利于降低槽电压。多流体出入口电解槽有利于产生更均匀的流体分布,流道高度对多出入口电解槽同样影响不大。宽导流柱间距的多流体出入口电解槽G-2.5-T-0-5-3,配合高流量,既能降低槽电压,又能提高电解质在电极面的法向流速,使电解槽发挥最佳性能。本工作对碱性水电解高效电解槽的放大设计和优化具有一定指导意义。
高玲玉, 杨琳, 王晨辉, 单桂轩, 霍欣怡, 张梦飞, 李韡, 张金利. 碱性电解槽三维两相CFD模拟研究[J]. 电化学(中英文), 2023, 29(9): 2207081.
Ling-Yu Gao, Lin Yang, Chen-Hui Wang, Gui-Xuan Shan, Xin-Yi Huo, Meng-Fei Zhang, Wei Li, Jin-Li Zhang. Three-Dimensional Two-Phase CFD Simulation of Alkaline Electrolyzers[J]. Journal of Electrochemistry, 2023, 29(9): 2207081.
Description | Value |
---|---|
Exchange current density at nickel foam negative electrode at 80 °C, | 23.4 A·m-2[ |
Exchange current density at nickel foam positive electrode at 70 °C, | 9.3 A·m-2[ |
Transfer coefficient at nickel foam negative electrode, α1 | 0.5[ |
Transfer coefficient at nickel foam positive electrode, α2 | 0.5[ |
Structure name | h_ch (mm) | Arrangement of conductive columns | h_w (mm) | w_ch (mm) | Number of inlet/outlet |
---|---|---|---|---|---|
G-2.5-T-0-3-1 | 2.5 | Triangular | 0 | 3 | 1 |
G-2.5-T-0.05-3-1 | 2.5 | Triangular | 0.05 | 3 | 1 |
G-2.5-T-1-3-1 | 2.5 | Triangular | 1 | 3 | 1 |
G-2.5-T-2-3-1 | 2.5 | Triangular | 2 | 3 | 1 |
G-2.25-T-0-3-1 | 2.25 | Triangular | 0 | 3 | 1 |
G-3-T-0-3-1 | 3 | Triangular | 0 | 3 | 1 |
G-2.5-S-0-3-1 | 2.5 | Square | 0 | 3 | 1 |
G-2.5-T-0-3-3 | 2.5 | Triangular | 0 | 3 | 3 |
G-2.5-T-0-5-1 | 2.5 | Triangular | 0 | 5 | 1 |
G-2.5-S-0-5-1 | 2.5 | Square | 0 | 5 | 1 |
G-2.5-S-0-7-1 | 2.5 | Square | 0 | 7 | 1 |
G-2.25-T-0-3-3 | 2.25 | Triangular | 0 | 3 | 3 |
G-3-T-0-3-3 | 3 | Triangular | 0 | 3 | 3 |
G-2.5-T-0-5-3 | 2.5 | Triangular | 0 | 5 | 3 |
G-2.5-S-0-5-3 | 2.5 | Square | 0 | 5 | 3 |
G-2.5-S-0-7-3 | 2.5 | Square | 0 | 7 | 3 |
[1] |
Chi J, Yu H M. Water electrolysis based on renewable energy for hydrogen production[J]. Chin. J. Catal., 2018, 39(3): 390-394.
doi: 10.1016/S1872-2067(17)62949-8 |
[2] |
Zakaria Z, Kamarudin S K. A review of alkaline solid polymer membrane in the application of aem electrolyzer: Materials and characterization[J]. Int. J. Energy Res., 2021, 45(13): 18337-18354.
doi: 10.1002/er.v45.13 URL |
[3] |
Dong Z Y, Yang J, Yu L, Daiyan R, Amal R. A green hydrogen credit framework for international green hydrogen trading towards a carbon neutral future[J]. Int. J. Hydrogen Energy, 2022, 47(2): 728-734.
doi: 10.1016/j.ijhydene.2021.10.084 URL |
[4] |
Zeng K, Zhang D K. Recent progress in alkaline water electrolysis for hydrogen production and applications[J]. Prog. Energy Combust. Sci., 2010, 36(3): 307-326.
doi: 10.1016/j.pecs.2009.11.002 URL |
[5] |
Jang D, Cho H S, Kang S. Numerical modeling and analysis of the effect of pressure on the performance of an alkaline water electrolysis system[J]. Appl. Energy, 2021, 287: 116554.
doi: 10.1016/j.apenergy.2021.116554 URL |
[6] |
De Dominici G, Gabriel B. Analytical study of over-voltages in alkaline electrolysis and their parametric dependencies through a multi-physical model[J]. Int. J. Energy Res., 2021, 46(3): 3295-3323.
doi: 10.1002/er.v46.3 URL |
[7] |
Zhang Z Q, Xing X H. Simulation and experiment of heat and mass transfer in a proton exchange membrane electrolysis cell[J]. Int. J. Hydrogen Energy, 2020, 45(39): 20184-20193.
doi: 10.1016/j.ijhydene.2020.02.102 URL |
[8] |
Toghyani S, Fakhradini S, Afshari E, Baniasadi E, Abdollahzadeh Jamalabadi MY, Safdari Shadloo M. Optimization of operating parameters of a polymer exchange membrane electrolyzer[J]. Int. J. Hydrogen Energy, 2019, 44(13): 6403-6414.
doi: 10.1016/j.ijhydene.2019.01.186 URL |
[9] |
Lee C H, Lee J K, Zhao B, Fahy K F, LaManna J M, Baltic E, Hussey D S, Jacobson D L, Schulz V P, Bazylak A. Temperature-dependent gas accumulation in polymer electrolyte membrane electrolyzer porous transport layers[J]. J. Power Sources, 2020, 446: 227312.
doi: 10.1016/j.jpowsour.2019.227312 URL |
[10] |
Jang D, Choi W, Cho H S, Cho W C, Kim C H, Kang S. Numerical modeling and analysis of the temperature effect on the performance of an alkaline water electrolysis system[J]. J. Power Sources, 2021, 506: 230106.
doi: 10.1016/j.jpowsour.2021.230106 URL |
[11] |
Han B, Steen S M, Mo J, Zhang F Y. Electrochemical performance modeling of a proton exchange membrane electrolyzer cell for hydrogen energy[J]. Int. J. Hydrogen Energy, 2015, 40(22): 7006-7016.
doi: 10.1016/j.ijhydene.2015.03.164 URL |
[12] |
Abdin Z, Webb C J, Gray E M. Modelling and simulation of an alkaline electrolyser cell[J]. Energy, 2017, 138: 316-331.
doi: 10.1016/j.energy.2017.07.053 URL |
[13] |
Alexiadis A, Dudukovic M P, Ramachandran P, Cornell A, Wanngård J, Bokkers A. Liquid-gas flow patterns in a narrow electrochemical channel[J]. Chem. Eng. Sci., 2011, 66(10): 2252-2260.
doi: 10.1016/j.ces.2011.02.046 URL |
[14] |
De Groot M T, Vreman A W. Ohmic resistance in zero gap alkaline electrolysis with a zirfon diaphragm[J]. Electrochim. Acta, 2021, 369: 137684.
doi: 10.1016/j.electacta.2020.137684 URL |
[15] |
Rodríguez J, Amores E. CFD modeling and experimental validation of an alkaline water electrolysis cell for hydrogen production[J]. Processes, 2020, 8(12): 1634.
doi: 10.3390/pr8121634 URL |
[16] |
Vogt H, Balzer R J. The bubble coverage of gas-evolving electrodes in stagnant electrolytes[J]. Electrochim. Acta, 2005, 50(10): 2073-2079.
doi: 10.1016/j.electacta.2004.09.025 URL |
[17] |
Li Y, Kang Z, Mo J, Yang G, Yu S, Talley D A, Han B, Zhang F Y. In-situ investigation of bubble dynamics and two-phase flow in proton exchange membrane electrolyzer cells[J]. Int. J. Hydrogen Energy, 2018, 43(24): 11223-11233.
doi: 10.1016/j.ijhydene.2018.05.006 URL |
[18] |
Wong X Y, Zhuo Y T, Shen Y S. Numerical analysis of hydrogen bubble behavior in a zero-gap alkaline water electrolyzer flow channel[J]. Ind. Eng. Chem. Res., 2021, 60(33): 12429-12446.
doi: 10.1021/acs.iecr.1c02554 URL |
[19] |
Lee J, Alam A, Park C, Yoon S, Ju H. Modeling of gas evolution processes in porous electrodes of zero-gap alkaline water electrolysis cells[J]. Fuel, 2022, 315: 123273.
doi: 10.1016/j.fuel.2022.123273 URL |
[20] |
Boissonneau P, Byrne B P. An experimental investigation of bubble-induced free convection in a small electrochemical cell[J]. J. Appl. Electrochem., 2000, 30(7): 767-775.
doi: 10.1023/A:1004034807331 URL |
[21] |
Aldas K, Pehlivanoglu N, Mat M D. Numerical and experimental investigation of two-phase flow in an electrochemical cell[J]. Int. J. Hydrogen Energy, 2008, 33(14): 3668-3675.
doi: 10.1016/j.ijhydene.2008.04.047 URL |
[22] |
Phillips R, Edwards A, Rome B, Jones D R, Dunnill C W. Minimising the ohmic resistance of an alkaline electrolysis cell through effective cell design[J]. Int. J. Hydrogen Energy, 2017, 42(38): 23986-23994.
doi: 10.1016/j.ijhydene.2017.07.184 URL |
[23] |
Haverkort J W, Rajaei H. Voltage losses in zero-gap alkaline water electrolysis[J]. J. Power Sources, 2021, 497: 229864.
doi: 10.1016/j.jpowsour.2021.229864 URL |
[24] |
Bratsch S G. Standard electrode potentials and temperature coefficients in water at 298.15 k[J]. J. Phys. Chem. Ref. Data, 1989, 18(1): 1-21.
doi: 10.1063/1.555839 URL |
[25] |
Gilliam R, Graydon J, Kirk D, Thorpe S. A review of specific conductivities of potassium hydroxide solutions for various concentrations and temperatures[J]. Int. J. Hydrogen Energy, 2007, 32(3): 359-364.
doi: 10.1016/j.ijhydene.2006.10.062 URL |
[26] |
González-Buch C, Herraiz-Cardona I, Ortega E, García-Antón J, Pérez-Herranz V. Synthesis and characterization of macroporous Ni, Co and Ni-Co electrocatalytic deposits for hydrogen evolution reaction in alkaline media[J]. Int. J. Hydrogen Energy, 2013, 38(25): 10157-10169.
doi: 10.1016/j.ijhydene.2013.06.016 URL |
[27] |
Mrjdha M S H, Kibria M F. Electrochemical studies of the nickel electrode for the oxygen evolution reaction[J]. Int. J. Hydrogen Energy, 1996, 21: 179-182.
doi: 10.1016/0360-3199(95)00066-6 URL |
[28] |
Torii K, Kodama M, Hirai S. Three-dimensional coupling numerical simulation of two-phase flow and electrochemical phenomena in alkaline water electrolysis[J]. Int. J. Hydrogen Energy, 2021, 46(71): 35088-35101.
doi: 10.1016/j.ijhydene.2021.08.101 URL |
[29] |
Weijs M, Janssen L J J J, Visser G. Ohmic resistance of solution in a vertical gas-evolving cell[J]. J. Appl. Electrochem., 1997, 27(4): 371-378.
doi: 10.1023/A:1018449301423 URL |
[30] |
Zarghami A, Deen N G, Vreman A W. CFD modeling of multiphase flow in an alkaline water electrolyzer[J]. Chem. Eng. Sci., 2020, 227: 115926.
doi: 10.1016/j.ces.2020.115926 URL |
[31] | Behbahani R M. Chemical engineering module: Comsol user`s guide[M]. 2013. |
[32] | Amores Vera E, Rodríguez Ruiz J, Merino Rodríguez C, García Escribano P. Study of an alkaline electrolyzer powered by renewable energy[C]// Proceedings of the COMSOL Conference, Stuttgart, Germany, 26-28 October 2011. |
[33] |
Magnussen O M, Gross A. Toward an atomic-scale understanding of electrochemical interface structure and dynamics[J]. J. Am. Chem. Soc., 2019, 141(12): 4777-4790.
doi: 10.1021/jacs.8b13188 pmid: 30768905 |
[34] |
Karacan C, Lohmann-Richters F P, Keeley G P, Scheepers F, Shviro M, Müller M, Carmo M, Stolten D. Challenges and important considerations when benchmarking single-cell alkaline electrolyzers[J]. Int. J. Hydrogen Energy, 2022, 47(7): 4294-4303.
doi: 10.1016/j.ijhydene.2021.11.068 URL |
[1] | 夏永康, 顾明远, 杨红官, 于馨智, 鲁兵安. CVD 法制备三维石墨烯的电化学储能性能[J]. 电化学(中英文), 2019, 25(1): 89-103. |
[2] | 修陆洋,于梦舟,杨鹏举,王治宇,邱介山. 基于内嵌钴/氮掺杂多孔碳三维石墨烯笼的抗团聚高效氧还原电催化剂[J]. 电化学(中英文), 2018, 24(6): 715-725. |
[3] | 罗鑫,陈士忠,吴玉厚. 质子交换膜燃料电池输出性能的数值模拟[J]. 电化学(中英文), 2018, 24(2): 182-188. |
[4] | 王晓敏, 窦湟琳, 田 真, 张久俊. 硫化镍/三维网络石墨烯复合材料制备及其在高性能超级电容器的应用研究[J]. 电化学(中英文), 2017, 23(2): 217-225. |
[5] | 孙崇云,李忠芳,卢雪伟,钟西站,刘玉荣. 纳米Fe(OH)3为模板的三维石墨烯类多孔碳的制备及其催化氧还原性能研究[J]. 电化学(中英文), 2016, 22(2): 157-163. |
[6] | 张勤伟,李运勇,沈培康*. 三维多级孔类石墨烯载三氧化二铁锂离子电池负极材料[J]. 电化学(中英文), 2015, 21(1): 66-71. |
[7] | 杨会文,胡熙恩,王学军. 发泡镍电极电化学还原嘌呤中间体[J]. 电化学(中英文), 2005, 11(2): 172-175. |
[8] | 刘柱方. 镍表面三维微图形的复制加工[J]. 电化学(中英文), 2004, 10(3): 249-253. |
[9] | 何春,安太成,熊亚,舒东,胡慧玲,朱锡海. 三维电极电化学反应器对有机废水的降解研究[J]. 电化学(中英文), 2002, 8(3): 327-332. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||