电化学(中英文) ›› 2023, Vol. 29 ›› Issue (6): 2218005. doi: 10.13208/j.electrochem.2218005
所属专题: “电分析”专题文章
张生雅, 姚敏, 王泽, 刘天娇, 张蓉芳, 叶慧琴, 冯彦俊, 卢小泉*()
收稿日期:
2022-12-10
修回日期:
2022-12-28
接受日期:
2023-04-13
出版日期:
2023-06-28
发布日期:
2023-04-23
Sheng-Ya Zhang, Min Yao, Ze Wang, Tian-Jiao Liu, Rong-Fang Zhang, Hui-Qin Ye, Yan-Jun Feng, Xiao-Quan Lu*()
Received:
2022-12-10
Revised:
2022-12-28
Accepted:
2023-04-13
Published:
2023-06-28
Online:
2023-04-23
Contact:
*Tel: (86-931)7971276, E-mail: 摘要:
在基于TiO2的光阳极上枝接电荷转移通道仍然是太阳能到化学转换技术的一个迫切瓶颈。尽管进行了大量的尝试,但TiO2作为有前途的光阳极材料仍然受到电荷传输动力学迟缓的影响。因此,一种组装策略涉及将金属卟啉基光敏剂分子(MP)轴向配位嫁接到表面改性的TiO2纳米棒(TiO2 NRs)光阳极上,形成复合MP/TiO2 NRs光电极。正如预期的那样,与单独的TiO2 NR和MPA/TiO2 NRs光电极相比,所得到的独特的MPB/TiO2 NRs光电极具有明显提高的光电流密度。采用扫描光电化学显微镜(SPECM)和强度调制光电流光谱(IMPS)系统地评估了MP/TiO2 NRs光电极的连续光激发电子转移(PET)动力学信息。通过数据拟合发现,在光照条件下,MPB/TiO2 NRs的光电子转移速率(keff)常数比纯TiO2 NRs高2.6倍左右。MPB/TiO2 NRs的高动力学常数是由于D-A结构的共轭分子MPB可以有效地加速分子内电子转移,以及促进电子在新型电荷转移通道中参与I3-到I-的还原反应。本研究展示的结果有望为研究人工光合作用电荷转移过程的机制和构建高效的光电极提供一些启发。
张生雅, 姚敏, 王泽, 刘天娇, 张蓉芳, 叶慧琴, 冯彦俊, 卢小泉. 通过扫描光电化学显微镜研究超分子光敏剂-二氧化钛薄膜系统的光诱导电子转移[J]. 电化学(中英文), 2023, 29(6): 2218005.
Sheng-Ya Zhang, Min Yao, Ze Wang, Tian-Jiao Liu, Rong-Fang Zhang, Hui-Qin Ye, Yan-Jun Feng, Xiao-Quan Lu. Scanning Photoelectrochemical Microscopic Study in Photoinduced Electron Transfer of Supramolecular Sensitizers-TiO2 Thin Films Systems[J]. Journal of Electrochemistry, 2023, 29(6): 2218005.
[1] |
Cao H Y, Wang T T, Li J X, Wu J B, Du P W. A molecular cobaloxime cocatalyst and ultrathin FeOOH nanolayers Co-modified BiVO4 photoanode for efficient photoelectrochemical water oxidation[J]. J. Energy Chem., 2022, 69: 497-505.
doi: 10.1016/j.jechem.2022.01.028 URL |
[2] |
Gao L L, Li F, Hu H G, Long X F, Xu N, Hu Y P, Wei S Q, Wang C L, Ma J T, Jin J. Dual modification of a BiVO4 photoanode for enhanced photoelectrochemical performance[J]. ChemSusChem., 2018, 11(15): 2502-2509.
doi: 10.1002/cssc.v11.15 URL |
[3] |
Zhang B Y, Liu K W, Xiang Y, Wang J M, Lin W R, Guo M, Ma G J. Facet-oriented assembly of Mo:BiVO4 and Rh:SrTiO3 particles: Integration of P-N conjugated photo-electrochemical system in a particle applied to photocatalytic overall water splitting[J]. ACS Catal., 2022, 12(4): 2415-2425.
doi: 10.1021/acscatal.2c00306 URL |
[4] |
Mitsui M, Nakagome Y, Niihori Y, Inoue S, Fujiwara Y, Kobayashi K. Starburst-shaped D-π-A chromophores possessing a hexaethynylbenzene core for dye-sensitized solar cells[J]. ACS Appl. Mater. Interfaces., 2021, 13(30): 35739-35749.
doi: 10.1021/acsami.1c08431 URL |
[5] |
Chang P H, Sil M C, Reddy K S K, Lin C H, Chen C M. Polyimide-based covalent organic framework as a photocurrent enhancer for efficient dye-sensitized solar cells[J]. ACS Appl. Mater. Interfaces., 2022, 14(22): 25466-25477.
doi: 10.1021/acsami.2c04507 URL |
[6] |
Li F S, Yang H, Zhuo Q M, Zhou D H, Wu X J, Zhang P L, Yao Z Y, Sun L C. A cobalt@cucurbit[5]uril complex as a highly efficient supramolecular catalyst for electrochemical and photoelectrochemical water splitting[J]. Angew. Chem. Int. Ed., 2021, 60(4): 1976-1985.
doi: 10.1002/anie.202011069 pmid: 33051952 |
[7] | Lu Y, Yang Y L, Fan X Y, Li Y Q, Zhou D H, Cai B, Wang L Y, Fan K, Zhang K. Boosting charge transport in BiVO4 photoanode for solar water oxidation[J]. Adv. Mater., 2022, 34(8): e2108178. |
[8] |
Sahu T K, Alam S, Bhowmick S, Mohanta M K, Qureshi M. Phosphorus nitride nano-dots as a versatile and metal-free support for efficient photoelectrochemical water oxidation[J]. Chem. Commun., 2021, 57(50): 6157-6160.
doi: 10.1039/D1CC01030A URL |
[9] | Song Y R, Zhang X M, Zhang Y X, Zhai P L, Li Z W, Jin D F, Cao J Q, Wang C, Zhang B, Gao J F, Sun L C, Hou J G. Engineering MoOx/Mxene hole transfer layers for unexpected boosting photoelectrochemical water oxidation[J]. Angew. Chem. Int. Ed., 2022, 61(16): e202200946. |
[10] |
Tateno H, Chen S Y, Miseki Y, Nakajima T, Mochizuki T, Sayama K. Photoelectrochemical oxidation of glycerol to dihydroxyacetone over an acid-resistant Ta:BiVO4 photoanode[J]. ACS Sustain. Chem. Eng., 2022, 10(23): 7586-7594.
doi: 10.1021/acssuschemeng.2c01282 URL |
[11] |
Abdelkarim O, Selopal G S, Suresh K, Navarro-Pardo F, Kumar P, Ghuman K K, Yurtsever A, Bassioni G, Wang Z M, Rosei F. Role of surface engineering of hybrid structure for high performance quantum dots based photoelectrochemical hydrogen generation[J]. Chem. Eng. J., 2022, 429: 132425.
doi: 10.1016/j.cej.2021.132425 URL |
[12] |
Yu Z R, Guo H, Sun Z L, Li Y, Liu Y H, Yang W G, Zhu M Y, Jin H M, Li Y, Feng L Y, Li S, Prucnal S, Li W X. U7Co 3d impurity energy level mediated photogenerated carriers transfer in Bi2S3/ZnS:Co/TiO2 photoanode[J]. Chem. Eng. J., 2022, 433: 134458.
doi: 10.1016/j.cej.2021.134458 URL |
[13] |
Shen Z, Song J, Yung B C, Zhou Z, Wu A, Chen X. Cancer therapy: Emerging strategies of cancer therapy based on ferroptosis[J]. Adv. Mater., 2018, 30(12): 1870084.
doi: 10.1002/adma.v30.12 URL |
[14] |
Banerjee R, Furukawa H, Britt D, Knobler C, O'Keeffe M, Yaghi O M. Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties[J]. J. Am. Chem. Soc., 2009, 131(11): 3875-3877.
doi: 10.1021/ja809459e pmid: 19292488 |
[15] |
Zhang G H, Chen J H, Yan H G, Su B, He X, Ran M. Effects of artificial aging on microstructure and mechanical properties of the Mg-4.5Zn-4.5Sn-2Al alloy[J]. J. Alloys Compd., 2014, 592: 250-257.
doi: 10.1016/j.jallcom.2013.12.250 URL |
[16] |
Park J, Lee T H, Kim C, Lee S A, Choi M J, Kim H, Yang J W, Lim J, Jang H W. Hydrothermally obtained type-Ⅱ heterojunction nanostructures of In2S3/TiO2 for remarkably enhanced photoelectrochemical water splitting[J]. Appl. Catal. B Environ., 2021, 295: 120276.
doi: 10.1016/j.apcatb.2021.120276 URL |
[17] |
Wang S B, Liu P J, Meng C Z, Wang Y D, Zhang L, Pan L, Yin Z, Tang N, Zou J J. Boosting photoelectrochemical water splitting by Au@Pt modified ZnO/Cds with synergy of Au-S bonds and surface plasmon resonance[J]. J. Catal., 2022, 408: 196-205.
doi: 10.1016/j.jcat.2022.03.003 URL |
[18] |
Zhang M, Li F Y, Benetti D, Nechache R, Wei Q, Qi X W, Rosei F. Ferroelectric polarization-enhanced charge separation in quantum dots sensitized semiconductor hybrid for photoelectrochemical hydrogen production[J]. Nano Energy, 2021, 81: 105626.
doi: 10.1016/j.nanoen.2020.105626 URL |
[19] |
Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting[J]. Chem. Soc. Rev., 2009, 38(1): 253-278.
doi: 10.1039/b800489g pmid: 19088977 |
[20] |
Ding C M, Shi J Y, Wang Z L, Li C. Correction to photoelectrocatalytic water splitting: Significance of cocatalysts, electrolyte, and interfaces[J]. ACS Catal., 2017, 7(3): 1706-1706.
doi: 10.1021/acscatal.7b00155 URL |
[21] |
Feng Y C, Wang X, Wang Y Q, Yan H J, Wang D. In situ characterization of electrode structure and catalytic processes in the electrocatalytic oxygen reduction reaction[J]. J. Electrochem., 2022, 28(3): 2108531.
doi: 10.13208/j.electrochem.210853 URL |
[22] |
Li Z L, Fang H, Chen Z P, Zou W X, Zhao C X, Yang X F. Regulating donor-acceptor interactions in triazine-based conjugated polymers for boosted photocatalytic hydrogen production[J]. Appl. Catal. B: Environ., 2022, 312: 121374.
doi: 10.1016/j.apcatb.2022.121374 URL |
[23] |
Han J, Li N J, Chen D Y, Xu Q F, Lu J M. Boosting photocatalytic activity for porphyrin-based D-a conjugated polymers via dual metallic sites regulation[J]. Appl. Catal. B: Environ., 2022, 317: 121724.
doi: 10.1016/j.apcatb.2022.121724 URL |
[24] |
Zou R Q, Sakurai H, Xu Q. Preparation, adsorption properties, and catalytic activity of 3d porous metal-organic frameworks composed of cubic building blocks and alkali-metal ions[J]. Angew. Chem. Int. Ed., 2006, 45: 2542-2546.
doi: 10.1002/(ISSN)1521-3773 URL |
[25] |
Lu F T, Zhang J, Zhou Y Z, Zhao Y M, Zhang B, Feng Y Q. Novel D-π-A porphyrin dyes with different alkoxy chains for use in dye-sensitized solar cells[J]. Dyes and Pigments., 2016, 125: 116-123.
doi: 10.1016/j.dyepig.2015.10.010 URL |
[26] |
Li S Z, Zhang S Y, Mei S, Kong X F, Yang M, Wu W J, Zhang S H, Tan H J. A novel porphyrin dye with phenoxazine as donor unit for efficient dye-sensitized solar cells[J]. Dyes and Pigments., 2021, 190: 109308.
doi: 10.1016/j.dyepig.2021.109308 URL |
[27] |
Zhou P J, Liang J Y, Lin B B, An Z W, Chen R, Chen X B, An Q, Chen P. Effect of the spatial configuration of donors on the photovoltaic performance of double D-π-A organic dyes[J]. ACS Appl. Mater. Interfaces., 2021, 13(34): 40648-40655.
doi: 10.1021/acsami.1c11547 URL |
[28] |
Chen Y Y, Tang Y Y, Zou J Z, Zeng K W, Baryshnikov G, Li C J, Xie Y S. Fluorenyl indoline as an efficient electron donor for concerted companion dyes: Enhanced light-harvesting and photocurrent[J]. ACS Appl. Mater. Interfaces., 2021, 13(42): 49828-49839.
doi: 10.1021/acsami.1c12448 URL |
[29] | Grobelny A, Shen Z, Eickemeyer F T, Antariksa N F, Zapotoczny S, Zakeeruddin S M, Gratzel M. Molecularly tailored photosensitizer with an efficiency of 13.2% for dye-sensitized solar cells[J]. Adv. Mater., 2022: e2207785. |
[30] |
Ji J M, Lee H J, Zhou H, Eom Y K, Kim C H, Kim H K. Influence of the Pi-bridge-fused ring and acceptor unit extension in D-π-A structured organic dyes for highly efficient dye-sensitized solar cells[J]. ACS Appl. Mater. Interfaces., 2022, 14(47): 52745-52757.
doi: 10.1021/acsami.2c13331 URL |
[31] |
Lv S X, Wu Y C, Cai K M, He H, Li Y J, Min L, Chen X S, Cheng J J, Yin L C. High drug loading and sub-quantitative loading efficiency of polymeric micelles driven by donor-receptor coordination interactions[J]. J. Am. Chem. Soc., 2018, 140(4): 1235-1238.
doi: 10.1021/jacs.7b12776 pmid: 29332390 |
[32] |
Yen Y S, Chou H H, Chen Y C, Hsu C Y, Lin J T. Recent developments in molecule-based organic materials for dye-sensitized solar cells[J]. J. Mater. Chem., 2012, 22(18): 8734-8747.
doi: 10.1039/c2jm30362k URL |
[33] |
Engel Y, Elnathan R, Pevzner A, Davidi G, Flaxer E, Patolsky F. Cover picture: Supersensitive detection of explosives by silicon nanowire arrays[J]. Angew. Chem. Int. Ed., 2010. 49(38): 6685.
doi: 10.1002/anie.201004012 URL |
[34] |
Hong S H, Wang Y F, Pan T Y, Chang C W, Kuo H H, Kuo M Y, Diau W G, Lin C Y, Wang C L, Lan C M. Enveloping porphyrins for efficient dye-sensitized solar cells[J]. Energy Environ. Sci., 2012, 5: 6933-6940.
doi: 10.1039/c2ee03308a URL |
[35] |
Li Y X, Wang G Y, Feng X X, Jia Q F, Li Y Y, Liu J L, Cao J, Liu J C. Double-layer novel zinc porphyrin based on axial coordination self-assembly for dye-sensitized solar cells[J]. J. Mol. Struct. 2021, 1242: 130819.
doi: 10.1016/j.molstruc.2021.130819 URL |
[36] |
Bassil B S, Dickman M H, Romer I, von der Kammer B, Kortz U. The tungstogermanate [Ce20Ge10W100O376(OH)4(H2O)30]56-: A polyoxometalate containing 20 cerium(iii) atoms[J]. Angew. Chem. Int. Ed., 2007, 46(32): 6192-6195.
doi: 10.1002/(ISSN)1521-3773 URL |
[37] |
Li F, Wang Z Y, Stein A. Cover picture: Shaping mesoporous silica nanoparticles by disassembly of hierarchically porous structures[J]. Angew. Chem. Int. Ed., 2007, 46(11): 1749-1749.
doi: 10.1002/(ISSN)1521-3773 URL |
[38] |
Ragoussi M E, Cid J J, Yum J H, de la Torre G, Di Censo D, Grätzel M, Torres T. Carboxyethynyl anchoring ligands: A means to improving the efficiency of phthalocyanine-sensitized solar cells[J]. Angew. Chem. Int. Ed., 2012, 124(18): 4451-4454.
doi: 10.1002/ange.201108963 URL |
[39] |
Sakamoto K, Yoshino S, Takemoto M, Furuya N. Syntheses of near infrared absorbed phthalocyanines to utilize photosensitizers[J] J. Porphyr. Phthalocyanines,. 2013, 17: 605-627.
doi: 10.1142/S1088424613500326 URL |
[40] | Beale A M, Jacques S, Gibson E K, Michiel M. Progress towards five dimensional diffraction imaging of functional materials under process conditions[J]. Coord. Chem. Rev., 2014, 277-278: 208-223. |
[41] |
Retsek J L, Drain C M, Kirmaier C, Nurco D J, Medforth C J, Smith K M, Sazanovich I V, Chirvony V S, Fajer J, Holten D. Photoinduced axial ligation and deligation dynamics of nonplanar nickel dodecaarylporphyrins[J]. J. Am. Chem. Soc., 2003, 125(32): 9787.
pmid: 12904044 |
[42] |
Zheng X L, Dinh C T, de Arquer F P, Zhang B, Liu M, Voznyy O, Li Y Y, Knight G, Hoogland S, Lu Z H, Du X W, Sargent E H. ZnFe2O4 leaves grown on TiO2trees enhance photoelectrochemical water splitting[J]. Small, 2016, 12(23): 3181-3188.
doi: 10.1002/smll.v12.23 URL |
[43] | Guo K Y, Liu Z F, Zhou C L, Han J H, Zhao Y F, Liu Z C, Li Y J, Cui T, Wang B, Zhang J. Fabrication of TiO2 nano-branched arrays/Cu2S composite structure and its photoelectric performance[J]. Appl. Catal. B: Environ., 2014, 154-155: 27-35. |
[44] |
Li S, Mo Q L, Zhu S C, Wei Z Q, Tang B, Liu B J, Liang H, Xiao Y, Wu G, Ge X Z, Xiao F X. Unleashing insulating polymer as charge transport cascade mediator[J]. Adv. Funct. Mater., 2022, 32(30): 2110848.
doi: 10.1002/adfm.v32.30 URL |
[45] |
Wu J, Huang P, Fan H T, Wang G, Liu W S. Metal-organic framework-derived P-Cu2O/N-Ce-Fe2O3 heterojunction nanorod photoanode coupling with a FeOOH cocatalyst for high-performance photoelectrochemical water oxidation[J]. ACS Appl. Mater. Interfaces., 2020, 12(27): 30304-30312.
doi: 10.1021/acsami.0c03929 URL |
[46] |
Kruger J, Plass R, Gratzel M, Cameron P J, Peter L M. Charge transport and back reaction in solid-state dye-sensitized solar cells: A study using intensity-modulated photovoltage and photocurrent spectroscopy[J]. J. Phys. Chem. B., 2003, 107(31): 7536-7539.
doi: 10.1021/jp0348777 URL |
[47] |
Salant A, Shalom M, Tachan Z, Buhbut S, Zaban A, Banin U. Quantum rod-sensitized solar cell: Nanocrystal shape effect on the photovoltaic properties[J]. Nano lett., 2012, 12(4): 2095-2100.
doi: 10.1021/nl300356e pmid: 22452287 |
[48] | Ning X M, Li W Q, Meng Y, Qin D D, Chen J, Mao X, Xue Z H, Shan D L, Devaramani S, Lu X Q. New insight into procedure of interface electron transfer through cascade system with enhanced photocatalytic activity[J]. Small, 2018, 14(15): e1703989. |
[49] |
Ning X M, Lu B Z, Zhang Z, Du P Y, Ren H X, Shan D L, Chen J, Gao Y J, Lu X Q. An efficient strategy for boosting photogenerated charge separation by using porphyrins as interfacial charge mediators[J]. Angew. Chem. Int. Ed., 2019, 58(47): 16800-16805.
doi: 10.1002/anie.201908833 pmid: 31486209 |
[50] | Ning X M, Yin D, Fan Y P, Zhang Q, Du P Y, Zhang D X, Chen J, Lu X Q. Plasmon-enhanced charge separation and surface reactions based on Ag-loaded transition-metal hydroxide for photoelectrochemical water oxidation[J]. Adv. Energy Mater., 2021, 11(17): 2100405. |
[1] | 韩金,周志有*,汪强,吕妙强,陈驰,孙世刚. Pt/H-TiO2催化剂制备及其甲醇电催化氧化性能[J]. 电化学(中英文), 2014, 20(2): 110-115. |
[2] | 吴晓珊, 黄丽英, 张锦雀, 朱善岚, . 四-(三氟乙烷氧基)酞菁锌在非水与水溶剂中的电化学性能[J]. 电化学(中英文), 2010, 16(4): 460-464. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||