电化学(中英文) ›› 2023, Vol. 29 ›› Issue (6): 2218006. doi: 10.13208/j.electrochem.2218006
所属专题: “电分析”专题文章
收稿日期:
2022-12-14
修回日期:
2023-02-09
接受日期:
2023-02-20
出版日期:
2023-06-28
发布日期:
2023-02-27
Chao Jinga, Yi-Tao Longb,c,*()
Received:
2022-12-14
Revised:
2023-02-09
Accepted:
2023-02-20
Published:
2023-06-28
Online:
2023-02-27
Contact:
*Tel: (86)13761159439, E-mail: 摘要:
具有独特局域表面等离子共振散射特性的贵金属纳米粒子,在可见光区域表现出明显的吸收和散射光谱特性。在过去的几十年中,基于纳米金和纳米银溶液的可视化颜色传感器,被广泛应用在金属离子、生物分子、农药等灵敏检测。自2000年,暗场显微镜的出现,实现了纳米尺度下等离子共振散射光谱的精准获取,将传感尺度从传统的实验试管发展到单纳米颗粒界面。单颗粒检测消除了本体溶液中大量纳米粒子产生的平均效应,可提供更加准确的反应信息。纳米粒子的散射光谱主要取决于颗粒的尺寸、形貌、成分以及颗粒间耦合作用等,因此,具有特定散射颜色的单个纳米粒子,可以作为优异的纳米探针。这篇综述聚焦于单颗粒纳米传感,首先介绍了纳米粒子局域表面等离子共振的原理和发展历史。随后,主要讨论了单个贵金属纳米粒子作为颜色编码传感器,在生物分子、环境污染物以及能源等领域的应用,尤其是基于单颗粒的原位纳米光谱电化学传感及其在电催化反应中的应用。例如,利用纳米粒子的溶出和生长过程,精巧地设计了针对不同待测物的纳米探针。另一方面,对单纳米粒子结构演变过程的原位监测,也有助于对纳米材料制备机理的理解。最后,着重探讨了纳米颜色传感器信号提取放大的检测手段,包括将肉眼识别的颜色转换为可读的三原色信息以及偏振光检测技术等,进一步扩展单颗粒颜色传感的应用范围。
静超, 龙亿涛. 暗场显微镜下的彩色“纳米星”[J]. 电化学(中英文), 2023, 29(6): 2218006.
Chao Jing, Yi-Tao Long. Colorful “Stars” in the Dark[J]. Journal of Electrochemistry, 2023, 29(6): 2218006.
[1] |
Kuwata H, Tamaru H, Esumi K, Miyano K. Resonant light scattering from metal nanoparticles: Practical analysis beyond rayleigh approximation[J]. Appl. Phys. Lett., 2003, 83(22): 4625.
doi: 10.1063/1.1630351 URL |
[2] |
Homola J, Yee S S, Gauglitz G. Surface plasmon resonance sensors: Review[J]. Sens. Actuat. B Chem., 1999, 54(1-2): 3-15.
doi: 10.1016/S0925-4005(98)00321-9 URL |
[3] |
Eustis S, El-Sayed M A. Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes[J]. Chem. Soc. Rev., 2006, 35(3): 209-217.
pmid: 16505915 |
[4] | Jing C, Reichert J. Nanoscale electrochemistry in the “dark-field”[J]. Curr. Opin. Electrochem., 2017, 6(1): 10-16. |
[5] |
Hu M, Novo C, Funston A, Wang H, Staleva H, Zou S, Mulvaney P, Xia Y, Hartland G V. Dark-field microscopy studies of single metal nanoparticles: Understanding the factors that influence the linewidth of the localized surface plasmon resonance[J]. J. Mater. Chem., 2008, 18(17): 1949-1960.
pmid: 18846243 |
[6] |
Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J, Van Duyne R P. Biosensing with plasmonic nanosensors[J]. Nat. Mater., 2008, 7(6): 442-453.
doi: 10.1038/nmat2162 pmid: 18497851 |
[7] |
Ma Y, Highsmith A L, Hill C M, Pan S. Dark-Field scattering spectroelectrochemistry analysis of hydrazine oxidation at Au nanoparticle-modified transparent electrodes[J]. J. Phys. Chem. C., 2018, 122(32): 18603-18614.
doi: 10.1021/acs.jpcc.8b05112 URL |
[8] |
Wonner K, Evers M V, Tschulik K. Simultaneous opto- and spectro-electrochemistry: Reactions of individual nanoparticles uncovered by dark-field microscopy[J]. J. Am. Chem. Soc., 2018, 140(40): 12658-12661.
doi: 10.1021/jacs.8b02367 pmid: 29995398 |
[9] |
Wang H H, He T, Du Y, Wang W H, Shen Y B, Li S P, Zhou X C, Yang F. Evolution of single nanobubbles through multi-state dynamics[J]. Chin. Chem. Lett., 2020, 31(9): 2442-2446.
doi: 10.1016/j.cclet.2020.03.049 URL |
[10] |
Wang Y X, Shan X N, Tao N J. Emerging tools for studying single entity electrochemistry[J]. Faraday Discuss., 2016, 193: 9-39.
pmid: 27722354 |
[11] |
Oja S M, Wood M, Zhang B. Nanoscale electrochemistry[J]. Anal. Chem., 2013, 85(2): 473-486.
doi: 10.1021/ac3031702 pmid: 23121243 |
[12] |
Novo C, Funston A M, Gooding A K, Mulvaney P. Electrochemical charging of single gold nanorods[J]. J. Am. Chem. Soc., 2009, 131(41): 14664-14666.
doi: 10.1021/ja905216h pmid: 19824726 |
[13] | Jing C, Long Y T. Observing electrochemistry on single plasmonic nanoparticles[J]. Electrochem. Sci. Adv., 2021, 2(4): e2100115. |
[14] |
Shang J, Fan J S, Qin W W, Li K. Single-particle measurements of nanocatalysis with dark-field microscopy[J]. Catalysts, 2022, 12(7): 764.
doi: 10.3390/catal12070764 URL |
[15] |
Olson J, Dominguez-Medina S, Hoggard A, Wang L Y, Chang W S, Link S. Optical characterization of single plasmonic nanoparticles[J]. Chem. Soc. Rev., 2015, 44(1): 40-57.
doi: 10.1039/c4cs00131a pmid: 24979351 |
[16] | Wang H H, Zhang T, Zhou X C. Dark-Field spectroscopy: Development, applications and perspectives in single nanoparticle catalysis[J]. J. Phys.: Condens. Matter, 2019, 31(47): 473001. |
[17] |
Asiala S M, Marr J M, Gervinskas G, Juodkazis S, Schultz Z D. Plasmonic color analysis of Ag-coated black-Si SERS substrate[J]. Phys. Chem. Chem. Phys., 2015, 17(45): 30461-30467.
doi: 10.1039/c5cp04506a pmid: 26510016 |
[18] |
Rodriguez-Fajardo V, Sanz V, de Miguel I, Berthelot J, Acimovic S S, Porcar-Guezenec R, Quidant R. Two-color dark-field (TCDF) microscopy for metal nanoparticle imaging inside cells[J]. Nanoscale, 2018, 10(8): 4019-4027.
doi: 10.1039/C7NR09408F URL |
[19] |
Alberti G, Zanoni C, Magnaghi L R, Biesuz R. Gold and silver nanoparticle-based colorimetric sensors: New trends and applications[J]. Chemosensors, 2021, 9(11): 305.
doi: 10.3390/chemosensors9110305 URL |
[20] | Wang S M, Wang H, Zhao W, Xu J J, Chen H Y. Single-particle detection of cholesterol based on the host-guest recognition induced plasmon resonance energy transfer[J]. Chin. Chem. Lett., 2022: 108053. |
[21] |
Liu G Y, Lu M, Huang X D, Li T F, Xu D H. Application of gold-nanoparticle colorimetric sensing to rapid food safety screening[J]. Sensors, 2018, 18(12): 4166.
doi: 10.3390/s18124166 URL |
[22] |
Sharma R, Dhillon A, Kumar D. Mentha-stabilized silver nanoparticles for high-performance colorimetric detection of Al(III) in aqueous systems[J]. Sci. Rep., 2018, 8(1): 5189.
doi: 10.1038/s41598-018-23469-1 pmid: 29581515 |
[23] |
Li Y, Jing C, Zhang L, Long Y T. Resonance scattering particles as biological nanosensors in vitro and in vivo[J]. Chem. Soc. Rev., 2012, 41(2): 632-642.
doi: 10.1039/C1CS15143F URL |
[24] |
Hafner J H, Mayer K M. Localized surface plasmon resonance sensors[J]. Chem. Rev., 2011, 111(6): 3828-3857.
doi: 10.1021/cr100313v pmid: 21648956 |
[25] |
Kelly K L, Coronado E, Zhao L L, Schatz G C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment[J]. J. Phys. Chem. B, 2003, 107(3): 668-677.
doi: 10.1021/jp026731y URL |
[26] |
Stewart M E, Anderton C R, Thompson L B, Maria J, Gray S K, Rogers J A, Nuzzo R G. Nanostructured plasmonic sensors[J]. Chem. Rev., 2008, 108(2): 494-521.
doi: 10.1021/cr068126n pmid: 18229956 |
[27] |
Sonnichsen C, Geier S, Hecker N E, von Plessen G, Feldmann J, Ditlbacher H, Lamprecht B, Krenn J R, Aussenegg F R, Chan V Z H, Spatz J P, Moller M. Spectroscopy of single metallic nanoparticles using total internal reflection microscopy[J]. Appl. Phys. Lett., 2000, 77(19): 2949-2951.
doi: 10.1063/1.1323553 URL |
[28] |
Schultz D A, Schultz S, Smith D R, Mock J J. Single-target molecule detection with nonbleaching multicolor optical immunolabels[J]. Proc. Natl. Acad. Sci., 2000, 97(3): 996-1001.
doi: 10.1073/pnas.97.3.996 URL |
[29] |
Nehl C L, Liao H, Hafner J H. Optical properties of star-shaped gold nanoparticles[J]. Nano Lett., 2006, 6(4): 683-688.
pmid: 16608264 |
[30] | Jain P K, El-Sayed I H, El-Sayed M A. Au nanoparticles target cancer[J]. Nano Today, 2007, 2(1): 18-29. |
[31] |
Mock J J, Barbic M, Smith D R, Schultz D A, Schultz S. Shape effects in plasmon resonance of individual colloidal silver nanoparticles[J]. J. Chem. Phys., 2002, 116(15): 6755-6759.
doi: 10.1063/1.1462610 URL |
[32] |
Liu Y, Ling J, Huang C Z. Individually color-coded plasmonic nanoparticles for rgb analysis[J]. Chem. Commun., 2011, 47(28): 8121-8123.
doi: 10.1039/c1cc11503k URL |
[33] |
Hill C M, Pan S. A Dark-Field scattering spectroelectrochemical technique for tracking the electrodeposition of single silver nanoparticles[J]. J. Am. Chem. Soc., 2013, 135(46): 17250-17253.
doi: 10.1021/ja4075387 pmid: 24175876 |
[34] |
Qin L X, Li Y, Li D W, Jing C, Chen B Q, Ma W, Heyman A, Shoseyov O, Willner I, Tian H, Long Y T. Electrodeposition of single-metal nanoparticles on stable protein 1 membranes: application of plasmonic sensing by single nanoparticles[J]. Angew. Chem. Int. Ed., 2012, 51(1): 140-144.
doi: 10.1002/anie.201106482 pmid: 22105926 |
[35] |
Hill C M, Bennett R, Zhou C, Street S, Zheng J, Pan S. Single Ag nanoparticle spectroelectrochemistry via dark-field scattering and fluorescence microscopies[J]. J. Phys. Chem. C., 2015, 119(12): 6760-6768.
doi: 10.1021/jp511637a URL |
[36] |
Wonner K, Rurainsky C, Tschulik K. Operando studies of the electrochemical dissolution of silver nanoparticles in nitrate solutions observed with hyperspectral dark-field microscopy[J]. Front Chem., 2019, 7: 912.
doi: 10.3389/fchem.2019.00912 pmid: 32010665 |
[37] |
Sun S S, Gao M X, Lei G, Zou H Y, Ma J, Huang C Z. Visually monitoring the etching process of gold nanoparticles by KI/I2 at single-nanoparticle level using scattered-light dark-field microscopic imaging[J]. Nano Res., 2016, 9(4): 1125-1134.
doi: 10.1007/s12274-016-1007-z URL |
[38] |
Hu S, Yi J, Zhang Y J, Lin K Q, Liu B J, Chen L, Zhan C, Lei Z C, Sun J J, Zong C, Li J F, Ren B. Observing atomic layer electrodeposition on single nanocrystals surface by dark field spectroscopy[J]. Nat. Commun., 2020, 11(1): 2518.
doi: 10.1038/s41467-020-16405-3 pmid: 32433462 |
[39] |
Qin L X, Jing C, Li Y, Li D W, Long Y T. Real-time monitoring of the aging of single plasmonic copper nanoparticles[J]. Chem. Commun., 2012, 48(10): 1511-1513.
doi: 10.1039/C1CC14326C URL |
[40] |
Chirea M, Collins S S, Wei X, Mulvaney P. Spectroelectrochemistry of silver deposition on single gold nanocrystals[J]. J. Phys. Chem. Lett., 2014, 5(24): 4331-4335.
doi: 10.1021/jz502349x pmid: 26273983 |
[41] |
Hwang C S H, Ahn M S, Lee Y, Chung T, Jeong K H. Ag/Au alloyed nanoislands for wafer-level plasmonic color filter arrays[J]. Sci. Rep., 2019, 9(1): 9082.
doi: 10.1038/s41598-019-45689-9 pmid: 31235848 |
[42] |
Wang J G, Fossey J S, Li M, Xie T, Long Y T. Real-time plasmonic monitoring of single gold amalgam nanoalloy electrochemical formation and stripping[J]. ACS Appl. Mater. Interface, 2016, 8(12): 8305-8314.
doi: 10.1021/acsami.6b01029 URL |
[43] |
Liu Y, Huang C Z. Real-time dark-field scattering microscopic monitoring of the in situ growth of single Ag@Hg nanoalloys[J]. ACS Nano, 2013, 7(12): 11026-11034.
doi: 10.1021/nn404694e pmid: 24279755 |
[44] |
Wang H, Zhao W, Xu C H, Chen H Y, Xu J J. Electrochemical synthesis of Au@semiconductor core-shell nanocrystals guided by single particle plasmonic imaging[J]. Chem. Sci., 2019, 10(40): 9308-9314.
doi: 10.1039/c9sc02804h pmid: 32110293 |
[45] |
Liu Q, Jing C, Zheng X, Gu Z, Li D, Li D W, Huang Q, Long Y T, Fan C. Nanoplasmonic detection of adenosine triphosphate by aptamer regulated self-catalytic growth of single gold nanoparticles[J]. Chem. Commun., 2012, 48(77): 9574-9576.
doi: 10.1039/c2cc34632j URL |
[46] |
Gu X Y, Liu J J, Gao P F, Li Y F, Huang C Z. Gold triangular nanoplates based single-particle dark-field microscopy assay of pyrophosphate[J]. Anal. Chem., 2019, 91(24): 15798-15803.
doi: 10.1021/acs.analchem.9b04093 pmid: 31747259 |
[47] |
Ye Z J, Weng R, Ma Y H, Wang F Y, Liu H, Wei L, Xiao L H. Label-free, single-particle, colorimetric detection of permanganate by GNPs@Ag core-shell nanoparticles with dark-field optical microscopy[J]. Anal. Chem., 2018, 90(21): 13044-13050.
doi: 10.1021/acs.analchem.8b04024 pmid: 30289245 |
[48] |
Huang M N, Fan Y P, Yuan X, Wei L. Color-coded detection of malathion based on enzyme inhibition with dark-field optical microscopy[J]. Sens. Actuat. B Chem., 2022, 353(15): 131135.
doi: 10.1016/j.snb.2021.131135 URL |
[49] |
Zhang L, Li Y, Li D W, Jing C, Chen X, Lv M, Huang Q, Long Y T, Willner I. Single gold nanoparticles as real-time optical probes for the detection of NADH-dependent intracellular metabolic enzymatic pathways[J]. Angew. Chem. Int. Ed., 2011, 50(30): 6789-6792.
doi: 10.1002/anie.201102151 pmid: 21661084 |
[50] |
Qi F, Han Y M, Ye Z J, Liu H, Wei L, Xiao L H. Color-coded single-particle pyrophosphate assay with dark-field optical microscopy[J]. Anal. Chem., 2018, 90(18): 11146-11153.
doi: 10.1021/acs.analchem.8b03211 pmid: 30114901 |
[51] |
Pini V, Kosaka P M, Ruz J J, Malvar O, Encinar M, Tamayo J, Calleja M. Spatially multiplexed dark-field microspectrophotometry for nanoplasmonics[J]. Sci. Rep., 2016, 6: 22836.
doi: 10.1038/srep22836 pmid: 26953042 |
[52] |
Ghosh S K, Pal T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications[J]. Chem. Rev., 2007, 107(11): 4797-4862.
doi: 10.1021/cr0680282 URL |
[53] |
Sonnichsen C, Reinhard B M, Liphardt J, Alivisatos A P. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles[J]. Nat. Biotechnol., 2005, 23(6): 741-745.
doi: 10.1038/nbt1100 pmid: 15908940 |
[54] |
Xiao L, Wei L, He Y, Yeung E S. Single molecule biosensing using color coded plasmon resonant metal nanoparticles[J]. Anal. Chem., 2010, 82(14): 6308-6314.
doi: 10.1021/ac101018v pmid: 20568720 |
[55] |
Jin H Y, Li D W, Zhang N, Gu Z, Long Y T. Analyzing carbohydrate-protein interaction based on single plasmonic nanoparticle by conventional Dark Field microscopy[J]. ACS Appl. Mater. Interface, 2015, 7(22): 12249-12253.
doi: 10.1021/acsami.5b02744 URL |
[56] |
Shi L, Jing C, Ma W, Li D W, Halls J E, Marken F, Long Y T. Plasmon resonance scattering spectroscopy at the single-nanoparticle level: Real-time monitoring of a click reaction[J]. Angew. Chem. Int. Ed., 2013, 52(23): 6011-6014.
doi: 10.1002/anie.201301930 pmid: 23616358 |
[57] |
Ding T, Mertens J, Lombardi A, Scherman O A, Baumberg J J. Light-directed tuning of plasmon resonances via plasmon-induced polymerization using hot electrons[J]. ACS Photonics, 2017, 4(6): 1453-1458.
doi: 10.1021/acsphotonics.7b00206 pmid: 28670601 |
[58] |
Hao J, Xiong B, Cheng X, He Y, Yeung E S. High-throughput sulfide sensing with colorimetric analysis of single Au-Ag core-shell nanoparticles[J]. Anal. Chem., 2014, 86(10): 4663-4667.
doi: 10.1021/ac500376e pmid: 24809220 |
[59] |
Zhou J, Yang T, He W, Pan Z Y, Huang C Z. A galvanic exchange process visualized on single silver nanoparticles via dark-field microscopy imaging[J]. Nanoscale, 2018, 10(26): 12805-12812.
doi: 10.1039/c8nr01879k pmid: 29947404 |
[60] |
Aaron J, Travis K, Harrison N, Sokolov K. Dynamic imaging of molecular assemblies in live cells based on nanoparticle plasmon resonance coupling[J]. Nano Lett., 2009, 9(10): 3612-3618.
doi: 10.1021/nl9018275 pmid: 19645464 |
[61] |
Gu Z, Jing C, Ying Y L, He P, Long Y T. In situ high throughput scattering light analysis of single plasmonic nanoparticles in living cells[J]. Theranostics, 2015, 5(2): 188-195.
doi: 10.7150/thno.10302 URL |
[62] |
Zhou J, Lei G, Zheng L L, Gao P F, Huang C Z. Hsi colour-coded analysis of scattered light of single plasmonic nanoparticles[J]. Nanoscale, 2016, 8(22): 11467-11471.
doi: 10.1039/c6nr01089j pmid: 27194457 |
[63] |
Zhou J, Gao P F, Zhang H Z, Lei G, Zheng L L, Liu H, Huang C Z. Color resolution improvement of the dark-field microscopy imaging of single light scattering plasmonic nanoprobes for microrna visual detection[J]. Nanoscale, 2017, 9(13): 4593-4600.
doi: 10.1039/c6nr09452j pmid: 28322387 |
[64] |
Sriram M, Markhali B P, Nicovich P R, Bennett D T, Reece P J, Brynn Hibbert D, Tilley R D, Gaus K, Vivekchand S R C, Gooding J J. A rapid readout for many single plasmonic nanoparticles using dark-field microscopy and digital color analysis[J]. Biosens. Bioelectron., 2018, 117: 530-536.
doi: S0956-5663(18)30500-1 pmid: 29982124 |
[65] |
Jing C, Gu Z, Ying Y L, Li D W, Zhang L, Long Y T. Chrominance to dimension: A real-time method for measuring the size of single gold nanoparticles[J]. Anal. Chem., 2012, 84(10): 4284-4291.
doi: 10.1021/ac203118g pmid: 22500563 |
[66] |
Wagner T, Lipinski H G, Wiemann M. Dark Field nanoparticle tracking analysis for size characterization of plasmonic and non-plasmonic particles[J]. J. Nanopart. Res., 2014, 16(5): 2419.
doi: 10.1007/s11051-014-2419-x URL |
[67] |
Huang Y, Kim D H. Dark-Field microscopy studies of polarization-dependent plasmonic resonance of single gold nanorods: rainbow nanoparticles[J]. Nanoscale, 2011, 3(8): 3228-3232.
doi: 10.1039/c1nr10336a pmid: 21698325 |
[68] |
Liu J J, Yan H H, Zhang Q, Gao P F, Li C M, Liang G L, Huang C Z, Wang J. High-resolution vertical polarization excited dark-field microscopic imaging of anisotropic gold nanorods for the sensitive detection and spatial imaging of intracellular microrna-21[J]. Anal. Chem., 2020, 92(19): 13118-13125.
doi: 10.1021/acs.analchem.0c02164 URL |
[69] |
Fan J R, Wu W G, Chen Z J, Zhu J, Li J. Three-dimensional cavity nanoantennas with resonant-enhanced surface plasmons as dynamic color-tuning reflectors[J]. Nanoscale, 2017, 9(10): 3416-3423.
doi: 10.1039/c6nr06934g pmid: 28009895 |
[70] |
Ng R J H, Krishnan R V, Wang H, Yang J K W. Darkfield colors from multi-periodic arrays of gap plasmon resonators[J]. Nanophotonics, 2020, 9(2): 533-545.
doi: 10.1515/nanoph-2019-0414 URL |
[71] |
Wang J G, Fossey J S, Li M, Li D W, Ma W, Ying Y L, Qian R C, Cao C, Long Y T. Real-time plasmonic monitoring of electrocatalysis on single nanorods[J]. J. Electroanal. Chem., 2016, 781: 257-264.
doi: 10.1016/j.jelechem.2016.10.008 URL |
[72] |
Zhou H, Liu Q, Rawson F J, Ma W, Li D W, Li D, Long YT. Optical monitoring of faradaic reaction using single plasmon-resonant nanorods functionalized with graphene[J]. Chem. Commun., 2015, 51(15): 3223-3226.
doi: 10.1039/C4CC07939F URL |
[73] |
Cao Y, Zhou H, Qian R C, Liu J, Ying Y L, Long Y T. Analysis of the electron transfer properties of carbon quantum dots on gold nanorod surfaces via plasmonic resonance scattering spectroscopy[J]. Chem. Commun., 2017, 53(42): 5729-5732.
doi: 10.1039/C7CC01464C URL |
[74] |
Jing C, Gu Z, Long Y T. Imaging electrocatalytic processes on single gold nanorods[J]. Faraday Discuss., 2016, 193: 371-385.
pmid: 27711884 |
[75] |
Jing C, Gu Z, Xie T, Long Y T. Color-coded imaging of electrochromic process at single nanoparticle level[J]. Chem. Sci., 2016, 7(8): 5347-5351.
doi: 10.1039/c6sc00903d pmid: 30155187 |
[1] | 孙琳琳, 王 伟, 陈洪渊. 结合光学成像技术研究单颗粒碰撞电化学[J]. 电化学(中英文), 2019, 25(3): 386-399. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||