电化学(中英文) ›› 2023, Vol. 29 ›› Issue (4): 2217001. doi: 10.13208/j.electrochem.2217001
所属专题: “下一代二次电池”专题文章
收稿日期:
2022-07-12
修回日期:
2022-09-11
接受日期:
2022-10-04
出版日期:
2023-04-28
发布日期:
2022-10-05
Zhen-Yu Wanga, Xue-Ping Gaob,*()
Received:
2022-07-12
Revised:
2022-09-11
Accepted:
2022-10-04
Published:
2023-04-28
Online:
2022-10-05
Contact:
*Tel: (86-22)23500876, E-mail: 摘要:
锂-硫电池具有2600 Wh·kg-1的理论能量密度,被认为是最具发展潜力的下一代能量存储体系之一。然而,锂-硫电池的应用严重受制于单质硫和放电产物(Li2S2/Li2S)迟滞的电化学反应动力学以及可溶性多硫化锂中间体的“穿梭效应”,这些问题导致电池的循环稳定性差、硫利用率以及库仑效率低下。将催化载体引入硫正极,可加快锂-硫电池中含硫物种反应速率,进而抑制活性物质溶解流失。这篇综述简要总结了金属和合金材料作为硫正极核心催化载体的最新研究进展,同时阐明了金属及合金载体对含硫物种的催化转换机理,最后对催化载体的构筑以及高能锂-硫电池的发展进行了展望。
王振宇, 高学平. 金属和合金作为锂-硫电池硫正极催化载体[J]. 电化学(中英文), 2023, 29(4): 2217001.
Zhen-Yu Wang, Xue-Ping Gao. Metals and Alloys as Catalytic Hosts of Sulfur Cathode for Lithium-Sulfur Batteries[J]. Journal of Electrochemistry, 2023, 29(4): 2217001.
[1] | Lu Y X, Rong X H, Hu Y S, Chen L Q, Li H. Research and development of advanced battery materials in China[J]. Energy Storage Mater., 2019, 23: 144-153. |
[2] |
Choi J W, Aurbach D. Promise and reality of post-lithium-ion batteries with high energy densities[J]. Nat. Rev. Mater., 2016, 1(4): 16013.
doi: 10.1038/natrevmats.2016.13 |
[3] |
Zhang Z, Kong L L, Liu S, Li G R, Gao X P. A high-efficiency sulfur/carbon composite based on 3D graphene nanosheet@carbon nanotube matrix as cathode for lithium-sulfur battery[J]. Adv. Energy Mater., 2017, 7(11): 1602543.
doi: 10.1002/aenm.v7.11 URL |
[4] |
Wang Z Y, Han D D, Liu S, Li G R, Yan T Y, Gao X P. Conductive RuO2 stacking microspheres as an effective sulfur immobilizer for lithium-sulfur battery[J]. Electrochim. Acta, 2020, 337(20): 135772.
doi: 10.1016/j.electacta.2020.135772 URL |
[5] |
Yamin H, Gorenshtein A, Penciner J, Sternberg Y, Peled E. Lithium sulfur battery-oxidation reduction-mechanisms of polysulphides in THF solutions[J]. J. Electrochem. Soc., 1988, 135(5): 1045-1048.
doi: 10.1149/1.2095868 |
[6] |
Yin Y X, Xin S, Guo Y G, Wang L J. Lithium-sulfur batteries: Electrochemistry, materials, and prospects[J]. Angew. Chem. Int. Ed., 2013, 52(50): 13186-13200.
doi: 10.1002/anie.201304762 URL |
[7] |
Evers S, Nazar L F. New approaches for high energy density lithium-sulfur battery cathodes[J]. Accounts Chem. Res., 2013, 46(5): 1135-1143.
doi: 10.1021/ar3001348 pmid: 23054430 |
[8] |
Wang J, Chew S Y, Zhao Z W, Ashraf S, Wexler D, Chen J, Ng S H, Chou S L, Liu H K. Sulfur-mesoporous carbon composites in conjunction with a novel ionic liquid electrolyte for lithium rechargeable batteries[J]. Carbon, 2008, 46(2): 229-235.
doi: 10.1016/j.carbon.2007.11.007 URL |
[9] |
Jayaprakash N, Shen J, Moganty S S, Corona A, Archer L A. Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries[J]. Angew. Chem. Int. Edit., 2011, 50(26): 5904-5908.
doi: 10.1002/anie.v50.26 URL |
[10] |
Yamin H, Peled E. Electrochemistry of a nonaqueous lithium/sulfur cell[J]. J. Power Sources, 1983, 9(3): 281-287.
doi: 10.1016/0378-7753(83)87029-3 URL |
[11] |
Gao R, Wang Z Y, Liu S, Shao G J, Gao X P. Metal phosphides and borides as the catalytic host of sulfur cathode for lithium-sulfur batteries[J]. Int. J. Miner., Metall. Mater., 2022, 29(5): 990-1002.
doi: 10.1007/s12613-022-2451-2 |
[12] |
Conder J, Bouchet R, Trabesinger S, Marino C, Gubler L, Villevieille C. Direct observation of lithium polysulfides in lithium-sulfur batteries using operando X-ray diffraction[J]. Nat. Energy, 2017, 2(6): 17069.
doi: 10.1038/nenergy.2017.69 URL |
[13] |
Rauh R D, Shuker F S, Marston J M, Brummer S B. Formation of lithium polysulfides in aprotic media[J]. J. Inorg. Nucl. Chem., 1977, 39(10): 1761-1766.
doi: 10.1016/0022-1902(77)80198-X URL |
[14] |
Zhao M, Li B Q, Peng H J, Yuan H, Wei J Y, Huang J Q. Lithium-sulfur batteries under lean electrolyte conditions: Challenges and opportunities[J]. Angew. Chem. Int. Edit., 2020, 59(31): 12636-12652.
doi: 10.1002/anie.v59.31 URL |
[15] |
Hagen M, Hanselmann D, Ahlbrecht K, Maca R, Gerber D, Tubke J. Lithium-sulfur cells: The gap between the state-of-the-art and the requirements for high energy battery cells[J]. Adv. Energy Mater., 2015, 5(16): 1401986.
doi: 10.1002/aenm.201401986 URL |
[16] |
Bhargav A, He J R, Gupta A, Manthiram A. Lithium-sulfur batteries: attaining the critical metrics[J]. Joule, 2020, 4(2): 285-291.
doi: 10.1016/j.joule.2020.01.001 URL |
[17] |
Ji X L, Lee K T, Nazar L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nat. Mater., 2009, 8(6): 500-506.
doi: 10.1038/nmat2460 |
[18] |
Dai F, Shen J M, Dailly A, Balogh M P, Lu P, Yang L, Xiao J, Liu J, Cai M. Hierarchical electrode architectures for high energy lithium-chalcogen rechargeable batteries[J]. Nano Energy, 2018, 51: 668-679.
doi: 10.1016/j.nanoen.2018.07.015 URL |
[19] |
Zhong Y, Xia X H, Deng S J, Zhan J Y, Fang R Y, Xia Y, Wang X L, Zhang Q, Tu J P. Popcorn inspired porous macrocellular carbon: Rapid puffing fabrication from rice and its applications in lithium-sulfur batteries[J]. Adv. Energy Mater., 2018, 8(1): 1701110.
doi: 10.1002/aenm.v8.1 URL |
[20] |
Gueon D, Hwang J T, Yang S B, Cho E, Sohn K, Yang D K, Moon J H. Spherical macroporous carbon nanotube particles with ultrahigh sulfur loading for lithium-sulfur battery cathodes[J]. ACS Nano, 2018, 12(1): 226-233.
doi: 10.1021/acsnano.7b05869 pmid: 29300088 |
[21] |
Seh Z W, Sun Y M, Zhang Q F, Cui Y. Designing high-energy lithium-sulfur batteries[J]. Chem. Soc. Rev., 2016, 45(20): 5605-5634.
pmid: 27460222 |
[22] |
Peng H J, Hou T Z, Zhang Q, Huang J Q, Cheng X B, Guo M Q, Yuan Z, He L Y, Wei F. Strongly coupled interfaces between a heterogeneous carbon host and a sulfur-containing guest for highly stable lithium-sulfur batteries: mechanistic insight into capacity degradation[J]. Adv. Mater. Interfaces, 2014, 1(7): 1400227.
doi: 10.1002/admi.201400227 URL |
[23] | Yuan H D, Zhang W K, Wang J G, Zhou G M, Zhuang Z Z, Luo J M, Huang H, Gan Y P, Liang C, Xia Y, Zhang J, Tao X Y. Facilitation of sulfur evolution reaction by pyridinic nitrogen doped carbon nanoflakes for highly-stable lithium-sulfur batteries[J]. Energy Storage Mater., 2018, 10: 1-9. |
[24] | Zhou X J, Tian J, Wu Q P, Hu J L, Li C L. N/O dual-doped hollow carbon microspheres constructed by holey nanosheet shells as large-grain cathode host for high loading Li-S batteries[J]. Energy Storage Mater., 2020, 24: 644-654. |
[25] |
Zhang L L, Liu D B, Muhammad Z, Wan F, Xie W, Wang Y J, Song L, Niu Z Q, Chen J. Single nickel atoms on nitrogen-doped graphene enabling enhanced kinetics of lithium-sulfur batteries[J]. Adv. Mater., 2019, 31(40): 1903955.
doi: 10.1002/adma.v31.40 URL |
[26] |
Xie J, Li B Q, Peng H J, Song Y W, Zhao M, Chen X, Zhang Q, Huang J Q. Implanting atomic cobalt within mesoporous carbon toward highly stable lithium-sulfur batteries[J]. Adv. Mater., 2019, 31(43): 1903813.
doi: 10.1002/adma.v31.43 URL |
[27] |
Du Z Z, Chen X J, Hu W, Chuang C H, Xie S, Hu A J, Yan W S, Kong X H, Wu X J, Ji H X, Wan L J. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries[J]. J. Am. Chem. Soc., 2019, 141(9): 3977-3985.
doi: 10.1021/jacs.8b12973 pmid: 30764605 |
[28] |
Shao A H, Zhang Z, Xiong D G, Yu J, Cai J X, Yang Z Y. Facile synthesis of a “two-in-one” sulfur host featuring metallic-cobalt-embedded N-doped carbon nanotubes for efficient lithium-sulfur batteries[J]. ACS Appl. Mater. Interfaces, 2020, 12(5): 5968-5978.
doi: 10.1021/acsami.9b20943 URL |
[29] |
Zhu M Q, Li S M, Li B, Yang S B. A liquid metal-based self-adaptive sulfur-gallium composite for long-cycling lithium-sulfur batteries[J]. Nanoscale, 2019, 11(2): 412-417.
doi: 10.1039/c8nr08625g pmid: 30543252 |
[30] |
Yom J H, Cho S M, Hwang S W, Yoon W Y. Effects of the Pd3Co nanoparticles-additive on the redox shuttle reaction in rechargeable Li-S batteries[J]. J. Electrochem. Soc., 2016, 163(10): A2179-A2184.
doi: 10.1149/2.0291610jes URL |
[31] |
Tao X Y, Wang J G, Liu C, Wang H T, Yao H B, Zheng G Y, Seh Z W, Cai Q X, Li W Y, Zhou G M, Zu C X, Cui Y. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design[J]. Nat. Commun., 2016, 7: 11203.
doi: 10.1038/ncomms11203 pmid: 27046216 |
[32] |
Liu Y T, Liu S, Li G R, Gao X P. Strategy of enhancing the volumetric energy density for lithium-sulfur batteries[J]. Adv. Mater., 2021, 33(8): 2003955.
doi: 10.1002/adma.v33.8 URL |
[33] |
Wang Z Y, Wang L, Liu S, Li G R, Gao X P. Conductive CoOOH as carbon-free sulfur immobilizer to fabricate sulfur-based composite for lithium-sulfur battery[J]. Adv. Funct. Mater., 2019, 29(23): 1901051.
doi: 10.1002/adfm.v29.23 URL |
[34] |
Liu M M, Zhang C C, Su J M, Chen X, Ma T Y, Huang T, Yu A S. Propelling polysulfide conversion by defect-rich MoS2 nanosheets for high-performance lithium-sulfur batteries[J]. ACS Appl. Mater. Inter., 2019, 11(23): 20788-20795.
doi: 10.1021/acsami.9b03011 URL |
[35] |
Pan Y L, Gong L L, Cheng X D, Zhou Y, Fu Y B, Feng J, Ahmed H, Zhang H P. Layer-spacing-enlarged MoS2 superstructural nanotubes with further enhanced catalysis and immobilization for Li-S batteries[J]. ACS Nano, 2020, 14(5): 5917-5925.
doi: 10.1021/acsnano.0c01124 URL |
[36] |
Yang X F, Gao X J, Sun Q, Jand S P, Yu Y, Zhao Y, Li X, Adair K, Kuo L Y, Rohrer J, Liang J N, Lin X T, Banis M N, Hu Y F, Zhang H Z, Li X F, Li R Y, Zhang H M, Kaghazchi P, Sham T K, Sun X L. Promoting the transformation of Li2S2 to Li2S: significantly increasing utilization of active materials for high-sulfur-loading Li-S batteries[J]. Adv. Mater., 2019, 31(25): 1901220.
doi: 10.1002/adma.v31.25 URL |
[37] |
Liao Y Q, Xiang J W, Yuan L X, Hao Z X, Gu J F, Chen X, Yuan K, Kalambate P K, Huang Y H. Biomimetic root-like TiN/C@S nanofiber as a freestanding cathode with high sulfur loading for lithium-sulfur batteries[J]. ACS Appl. Mater. Interfaces, 2018, 10(44): 37955-37962.
doi: 10.1021/acsami.8b11118 URL |
[38] |
Sun W W, Liu C, Li Y J, Luo S Q, Liu S K, Hong X B, Xie K, Liu Y M, Tan X J, Zheng C M. Rational construction of Fe2N@C yolk-shell nanoboxes as multifunctional hosts for ultralong lithium-sulfur batteries[J]. ACS Nano, 2019, 13(10): 12137-12147.
doi: 10.1021/acsnano.9b06629 URL |
[39] |
Jiang G S, Xu F, Yang S H, Wu J P, Wei B Q, Wang H Q. Mesoporous, conductive molybdenum nitride as efficient sulfur hosts for high-performance lithium-sulfur batteries[J]. J. Power Sources, 2018, 395: 77-84.
doi: 10.1016/j.jpowsour.2018.05.061 URL |
[40] |
Wang C H, Yang H C, Zhang Y J, Wang Q B. NiFe alloy nanoparticles with hcp crystal structure stimulate superior oxygen evolution reaction electrocatalytic activity[J]. Angew. Chem. Int. Ed., 2019, 58(18): 6099-6103.
doi: 10.1002/anie.201902446 pmid: 30840347 |
[41] |
Kong Z J, Maswadeh Y, Vargas J A, Shan S Y, Wu Z P, Kareem H, Leff A C, Tran D T, Chang F F, Yan S, Nam S, Zhao X F, Lee J M, Luo J, Shastri S, Yu G, Petkov V, Zhong C J. Origin of high activity and durability of twisty nanowire alloy catalysts under oxygen reduction and fuel cell operating conditions[J]. J. Am. Chem. Soc., 2020, 142(3): 1287-1299.
doi: 10.1021/jacs.9b10239 pmid: 31885267 |
[42] |
Lim W G, Kim S, Jo C, Lee J. A comprehensive review of materials with catalytic effects in Li-S batteries: Enhanced redox kinetics[J]. Angew. Chem. Int. Edit., 2019, 58(52): 18746-18757.
doi: 10.1002/anie.v58.52 URL |
[43] |
Liu D H, Zhang C, Zhou G M, Lv W, Ling G W, Zhi L J, Yang Q H. Catalytic effects in lithium-sulfur batteries: promoted sulfur transformation and reduced shuttle effect[J]. Adv. Sci., 2018, 5(1): 1700270.
doi: 10.1002/advs.201700270 URL |
[44] |
Wang P, Xi B J, Huang M, Chen W H, Feng J K, Xiong S L. Emerging catalysts to promote kinetics of lithium-sulfur batteries[J]. Adv. Energy Mater., 2021, 11(7): 2002893.
doi: 10.1002/aenm.v11.7 URL |
[45] |
Peng L L, Wei Z Y, Wan C Z, Li J, Chen Z, Zhu D, Baumann D, Liu H T, Allen C S, Xu X, Kirkland A I, Shakir I, Almutairi Z, Tolbert S, Dunn B, Huang Y, Sautet P, Duan X F. A fundamental look at electrocatalytic sulfur reduction reaction[J]. Nat. Catal., 2020, 3(9): 762-770.
doi: 10.1038/s41929-020-0498-x |
[46] |
Al Salem H, Babu G, Rao C V, Arava L M R. Electrocatalytic polysulfide traps for controlling redox shuttle process of Li-S batteries[J]. J. Am. Chem. Soc., 2015, 137(36): 11542-11545.
doi: 10.1021/jacs.5b04472 pmid: 26331670 |
[47] |
He J R, Bhargav A, Manthiram A. High-energy-density, long-life lithium-sulfur batteries with practically necessary parameters enabled by low-cost Fe-Ni nanoalloy catalysts[J]. ACS Nano, 2021, 15(5): 8583-8591.
doi: 10.1021/acsnano.1c00446 pmid: 33891408 |
[48] |
Li H Y, Fei L F, Zhang R, Yu S L, Zhang Y Y, Shu L L, Li Y, Wang Y. FeCo alloy catalysts promoting polysulfide conversion for advanced lithium-sulfur batteries[J]. J. Energy Chem., 2020, 49: 339-347.
doi: 10.1016/j.jechem.2020.02.050 URL |
[49] | Song X Q, Tian D, Qiu Y, Sun X, Jiang B, Zhao C H, Zhang Y, Fan L S, Zhang N Q. Improving poisoning resistance of electrocatalysts via alloying strategy for high-performance lithium-sulfur batteries[J]. Energy Storage Mater., 2021, 41: 248-254. |
[50] |
Wang Z Y, Zhang B H, Liu S, Li G R, Yan T Y, Gao X P. Nickel-platinum alloy nanocrystallites with high-index facets as highly effective core catalyst for lithium-sulfur batteries[J]. Adv. Funct. Mater., 2022, 32(27): 2200893.
doi: 10.1002/adfm.v32.27 URL |
[51] |
Lin Z J, Li X, Huang W L, Zhu X, Wang Y, Shan Z Q. Active platinum nanoparticles as a bifunctional promoter for lithium-sulfur batteries[J]. ChemElectroChem, 2017, 4(10): 2577-2582.
doi: 10.1002/celc.201700533 URL |
[52] |
Liu Y, Kou W, Li X C, Huang C Q, Shui R B, He G H. Constructing patch-Ni-shelled Pt@Ni nanoparticles within confined nanoreactors for catalytic oxidation of insoluble polysulfides in Li-S batteries[J]. Small, 2019, 15(34): 1902431.
doi: 10.1002/smll.v15.34 URL |
[53] |
Zhou G M, Yang A K, Gao G P, Yu X Y, Xu J W, Liu C W, Ye Y S, Pei A E, Wu Y C, Peng Y C, Li Y X, Liang Z, Liu K, Wang L W, Cui Y. Supercooled liquid sulfur maintained in three-dimensional current collector for high-performance Li-S batteries[J]. Sci. Adv., 2020, 6(21): eaay5098.
doi: 10.1126/sciadv.aay5098 URL |
[54] |
Xing Z Y, Tan G Q, Yuan Y F, Wang B, Ma L, Xie J, Li Z S, Wu T P, Ren Y, Shahbazian-Yassar R, Lu J, Ji X L, Chen Z W. Consolidating lithiothermic-ready transition metals for Li2S-based cathodes[J]. Adv. Mater., 2020, 32(31): 2002403.
doi: 10.1002/adma.v32.31 URL |
[55] |
Wang H F, Chen L Y, Wang M, Liu Z, Xu Q. Hollow spherical superstructure of carbon nanosheets for bifunctional oxygen reduction and evolution electrocatalysis[J]. Nano Lett., 2021, 21(8): 3640-3648.
doi: 10.1021/acs.nanolett.1c00757 URL |
[56] |
Duan Y, Yu Z Y, Yang L, Zheng L R, Zhang C T, Yang X T, Gao F Y, Zhang X L, Yu X X, Liu R, Ding H H, Gu C, Zheng X S, Shi L, Jiang J, Zhu J F, Gao M R, Yu S H. Bimetallic nickel-molybdenum/tungsten nanoalloys for high-efficiency hydrogen oxidation catalysis in alkaline electrolytes[J]. Nat. Commun., 2020, 11(1): 4789.
doi: 10.1038/s41467-020-18585-4 pmid: 32963247 |
[57] | Qiao Z S, Zhou F, Zhang Q F, Pei F, Zheng H F, Xu W J, Liu P F, Ma Y T, Xie Q S, Wang L S, Fang X L, Peng D L. Chemisorption and electrocatalytic effect from CoxSny alloy for high performance lithium sulfur batteries[J]. Energy Storage Mater., 2019, 23: 62-71. |
[58] |
Lim D, Oh E, Lim C, Shim S E, Baeck S H. Bimetallic NiFe alloys as highly efficient electrocatalysts for the oxygen evolution reaction[J]. Catal. Today, 2020, 352: 27-33.
doi: 10.1016/j.cattod.2019.09.046 URL |
[59] |
Zeng P, Liu C, Zhao X F, Yuan C, Chen Y G, Lin H P, Zhang L. Enhanced catalytic conversion of polysulfides using bimetallic Co7Fe3 for high-performance lithium-sulfur batteries[J]. ACS Nano, 2020, 14(9): 11558-11569.
doi: 10.1021/acsnano.0c04054 pmid: 32865976 |
[60] |
Hu Y, Cheng C, Yan T R, Liu G L, Yuan C, Yan Y Y, Gu Z H, Zeng P, Zheng L R, Zhang J, Zhang L. Catalyzing polysulfide redox conversion for promoting the electrochemical performance of lithium-sulfur batteries by CoFe alloy[J]. Chem. Eng. J., 2021, 421: 129997.
doi: 10.1016/j.cej.2021.129997 URL |
[61] |
Zhang Z, Shao A H, Xiong D G, Yu J, Koratkar N, Yang Z Y. Efficient polysulfide redox enabled by lattice-distorted Ni3Fe intermetallic electrocatalyst-modified separator for lithium-sulfur batteries[J]. ACS Appl. Mater. Inter., 2020, 12(17): 19572-19580.
doi: 10.1021/acsami.0c02942 URL |
[62] |
Wang Z Y, Wang H M, Liu S, Li G R, Gao X P. To promote the catalytic conversion of polysulfides using Ni-B alloy nanoparticles on carbon nanotube microspheres under high sulfur loading and a lean electrolyte[J]. ACS Appl. Mater. Inter., 2021, 13(17): 20222-20232.
doi: 10.1021/acsami.1c03791 URL |
[63] |
Bueno S L A, Ashberry H M, Shafei I, Skrabalak S E. Building durable multimetallic electrocatalysts from intermetallic seeds[J]. Accounts Chem. Res., 2021, 54(7): 1662-1672.
doi: 10.1021/acs.accounts.0c00655 pmid: 33377763 |
[64] |
Xu X L, Zhang X, Sun H, Yang Y, Dai X P, Gao J S, Li X Y, Zhang P F, Wang H H, Yu N F, Sun S G. Synthesis of Pt-Ni alloy nanocrystals with high-index facets and enhanced electrocatalytic properties[J]. Angew. Chem. Int. Ed., 2014, 53(46): 12522-12527.
doi: 10.1002/anie.201406497 pmid: 25195668 |
[65] |
Zhang P F, Dai X P, Zhang X, Chen Z K, Yang Y, Sun H, Wang X B, Wang H, Wang M L, Su H X, Li D, Li X S, Qin Y C. One-pot synthesis of ternary Pt-Ni-Cu nanocrystals with high catalytic performance[J]. Chem. Mat., 2015, 27(18): 6402-6410.
doi: 10.1021/acs.chemmater.5b02575 URL |
[66] |
Wang Y, Zhuo H Y, Sun H, Zhang X, Dai X P, Luan C L, Qin C L, Zhao H H, Li J, Wang M L, Ye J Y, Sun S G. Implanting Mo atoms into surface lattice of Pt3Mn alloys enclosed by high-indexed facets: promoting highly active sites for ethylene glycol oxidation[J]. ACS Catal., 2019, 9(1): 442-455.
doi: 10.1021/acscatal.8b04447 |
[67] |
Lun Z Y, Ouyang B, Kwon D H, Ha Y, Foley E E, Huang T Y, Cai Z J, Kim H, Balasubramanian M, Sun Y Z, Huang J P, Tian Y S, Kim H, McCloskey B D, Yang W L, Clement R J, Ji H W, Ceder G. Cation-disordered rocksalt-type high-entropy cathodes for Li-ion batteries[J]. Nat. Mater., 2021, 20(2): 214-221.
doi: 10.1038/s41563-020-00816-0 pmid: 33046857 |
[68] |
Li H N, Zhu H, Shen Q K, Huang S D, Lu S L, Ma P M, Dong W F, Du M L. A novel synergistic confinement strategy for controlled synthesis of high-entropy alloy electrocatalysts[J]. Chem. Commun., 2021, 57(21): 2637-2640.
doi: 10.1039/D0CC07345H URL |
[69] |
Jia Z, Yang T, Sun L G, Zhao Y L, Li W P, Luan J H, Lyu F C, Zhang L C, Kruzic J J, Kai J J, Huang J C, Lu J, Liu C T. A novel multinary intermetallic as an active electrocatalyst for hydrogen evolution[J]. Adv. Mater., 2020, 32(21): 2000385.
doi: 10.1002/adma.v32.21 URL |
[70] |
Li H D, Han Y, Zhao H, Qi W J, Zhang D, Yu Y D, Cai W W, Li S X, Lai J P, Huang B L, Wang L. Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis[J]. Nat. Commun., 2020, 11(1): 5437.
doi: 10.1038/s41467-020-19277-9 pmid: 33116124 |
[71] |
Batchelor T A A, Pedersen J K, Winther S H, Castelli I E, Jacobsen K W, Rossmeisl J. High-entropy alloys as a discovery platform for electrocatalysis[J]. Joule, 2019, 3(3): 834-845.
doi: 10.1016/j.joule.2018.12.015 |
[72] | Yao Y G, Dong Q, Brozena A, Luo J, Miao J W, Chi M F, Wang C, Kevrekidis I G, Ren Z J, Greeley J, Wang G F, Anapolsky A, Hu L B. High-entropy nanoparticles: Synthesis-structure-property relationships and data-driven discovery[J]. Science, 2022, 376(6589): 151. |
[73] | Xu H F, Hu R M, Zhang Y Z, Yan H B, Zhu Q, Shang J X, Yang S B, Li B. Nano high-entropy alloy with strong affinity driving fast polysulfide conversion towards stable lithium sulfur batteries[J]. Energy Storage Mater., 2021, 43: 212-220. |
[74] |
Wang Z Y, Ge H L, Liu S, Li G R, Gao X P. High-entropy alloys to activate the sulfur cathode for lithium-sulfur batteries[J]. Energy Environ. Mater., 2022, DOI: 10.1002/eem2.12358.
doi: 10.1002/eem2.12358 |
[1] | 丑佳, 王雅慧, 王文鹏, 辛森, 郭玉国. 面向高性能锂-硫二次电池应用的非对称电极-电解质界面[J]. 电化学(中英文), 2023, 29(9): 2217009-. |
[2] | 王璐, 高学平. 基于钴酸锂载体构筑高体积比容量硫基复合材料[J]. 电化学(中英文), 2020, 26(5): 750-758. |
[3] | 夏永康, 顾明远, 杨红官, 于馨智, 鲁兵安. CVD 法制备三维石墨烯的电化学储能性能[J]. 电化学(中英文), 2019, 25(1): 89-103. |
[4] | 袁守怡,庞莹,王丽娜,王永刚,夏永姚. 锂-硫电池研究现状及展望[J]. 电化学(中英文), 2016, 22(5): 453-463. |
[5] | 赵春荣, 余仲宝, 王维坤, 杨裕生, . 纳米碳纤维-硫正极电化学性能[J]. 电化学(中英文), 2009, 15(1): 88-91. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||