电化学(中英文) ›› 2023, Vol. 29 ›› Issue (12): 2203231. doi: 10.13208/j.electrochem.2203231
所属专题: “下一代二次电池”专题文章
张衡1, 夏力行1, 姜珊1, 王福芝1, 谭占鳌2,*()
收稿日期:
2022-03-23
修回日期:
2022-05-04
接受日期:
2022-05-05
出版日期:
2023-12-28
发布日期:
2022-05-09
通讯作者:
*谭占鳌,Tel: (86-10)61772186,E-mail: tanzhanao@mail.buct.edu.cn
基金资助:
Heng Zhang1, Li-Xing Xia1, Shan Jiang1, Fu-Zhi Wang1, Zhan-Ao Tan2,*()
Received:
2022-03-23
Revised:
2022-05-04
Accepted:
2022-05-05
Published:
2023-12-28
Online:
2022-05-09
摘要:
电极的性能是实现水系醌基氧化还原液流电池(AQRFBs)高能量效率的关键。本文采用尿素水热反应对石墨毡(GF)进行改性,同时研究了水热反应时间对氮掺杂石墨毡表面官能团和结构的影响。利用扫描电子显微镜(SEM)、比表面积及孔隙度分析仪(BET)、拉曼光谱(Raman)和X射线光电子能谱(XPS)对改性电极的表面形貌、比表面积、碳缺陷、元素含量和表面官能团进行了表征。然后,通过循环伏安法、电化学阻抗谱和单电池循环对改性电极的电化学性能进行了研究。结果表明,氮掺杂提高了石墨毡的比表面积、亲水性和电导率。氮掺杂石墨毡(NGFs)具有优异的电化学催化活性和较低的电荷转移电阻。与GF相比,在100 mA·cm-2时,电池负极使用NGF-6电极后,醌基氧化还原液流电池的能量效率提高了8.0%。
张衡, 夏力行, 姜珊, 王福芝, 谭占鳌. 氮掺杂石墨毡对水系醌基氧化还原液流电池性能的影响[J]. 电化学(中英文), 2023, 29(12): 2203231.
Heng Zhang, Li-Xing Xia, Shan Jiang, Fu-Zhi Wang, Zhan-Ao Tan. Nitrogen-Doped Graphite Felt on the Performance of Aqueous Quinone-Based Redox Flow Batteries[J]. Journal of Electrochemistry, 2023, 29(12): 2203231.
[1] |
Yang Z G, Zhang J L, Kintner-Meyer M C W, Lu X C, Choi D W, Lemmon J P, Liu J. Electrochemical energy storage for green grid[J]. Chem. Rev., 2011, 111(5): 3577-3613.
doi: 10.1021/cr100290v pmid: 21375330 |
[2] |
Soloveichik G L. Flow batteries: Current status and trends[J]. Chem. Rev., 2015, 115(20): 11533-11558.
doi: 10.1021/cr500720t pmid: 26389560 |
[3] |
Xia L X, Liu H, Liu L, Tan Z A. Recent progress in organic redox flow batteries[J]. J. Electrochem., 2018, 24(5): 466-487.
doi: 10.13208/j.electrochem.180142 |
[4] |
Huskinson B, Marshak M P, Suh C, Er S, Gerhardt M R, Galvin C J, Chen X, Aspuru-Guzik A, Gordon R G, Aziz M J. A metal-free organic-inorganic aqueous flow battery[J]. Nature, 2014, 505(7482): 195-198.
doi: 10.1038/nature12909 |
[5] |
Lin K, Chen Q, Gerhardt M R, Tong L, Kim S B, Eisenach L, Valle A W, Hardee D, Gordon R G, Aziz M J, Marshak M P. Alkaline quinone flow battery[J]. Science, 2015, 349(6255): 1529-1532.
doi: 10.1126/science.aab3033 pmid: 26404834 |
[6] |
Kwabi D G, Lin K X, Ji Y L, Kerr E F, Goulet M A, De Porcellinis D, Tabor D P, Pollack D A, Aspuru-Guzik A, Gordon R G, Aziz M J. Alkaline quinone flow battery with long lifetime at pH 12[J]. Joule, 2018, 2(9): 1894-1906.
doi: 10.1016/j.joule.2018.07.005 URL |
[7] | Ji Y L, Goulet M A, Pollack D A, Kwabi D G, Jin S Y, De Porcellinis D, Kerr E F, Gordon R G, Aziz M J. A phosphonate-functionalized quinone redox flow battery at near-neutral pH with record capacity retention rate[J]. Adv. Energy Mater., 2019, 9(12): 1900039. |
[8] |
Wedege K, Drazevic E, Konya D, Bentien A. Organic redox species in aqueous flow batteries: Redox potentials, chemical stability and solubility[J]. Sci Rep, 2016, 6(1): 1-13.
doi: 10.1038/s41598-016-0001-8 |
[9] | Xia L X, Huo W B, Gao H Z, Zhang H, Chu F M, Liu H, Tan Z A. Intramolecular hydrogen bonds induced high solubility for efficient and stable anthraquinone based neutral aqueous organic redox flow batteries[J]. J. Power Sources, 2021, 498: 229896. |
[10] |
Zhong S, Skyllas-Kazacos M. Electrochemical behaviour of vanadium(V)/vanadium(IV) redox couple at graphite electrodes[J]. J. Power Sources, 1992, 39(1): 1-9.
doi: 10.1016/0378-7753(92)85001-Q URL |
[11] |
He Z X, Jiang Y Q, Li Y H, Zhu J, Zhou H Z, Meng W, Wang L, Dai L. Carbon layer-exfoliated, wettability-enhanced, SO3H-functionalized carbon paper: A superior positive electrode for vanadium redox flow battery[J]. Carbon, 2018, 127: 297-304.
doi: 10.1016/j.carbon.2017.11.006 URL |
[12] |
Yue L, Li W S, Sun F Q, Zhao L Z, Xing L D. Highly hydroxylated carbon fibres as electrode materials of all-vanadium redox flow battery[J]. Carbon, 2010, 48(11): 3079-3090.
doi: 10.1016/j.carbon.2010.04.044 URL |
[13] | Jiang H R, Sun J, Wei L, Wu M C, Shyy W, Zhao T S. A high power density and long cycle life vanadium redox flow battery[J]. Energy Storage Mater., 2020, 24: 529-540. |
[14] |
Sun B, Skyllas-Kazacos M. Modification of graphite electrode materials for vanadium redox flow battery application—I. Thermal treatment[J]. Electrochim. Acta, 1992, 37(7): 1253-1260.
doi: 10.1016/0013-4686(92)85064-R URL |
[15] |
Wang R, Li Y S, He Y L. Achieving gradient-pore-oriented graphite felt for vanadium redox flow batteries: meeting improved electrochemical activity and enhanced mass transport from nano-to micro-scale[J]. J. Mater. Chem. A, 2019, 7(18): 10962-10970.
doi: 10.1039/c9ta00807a |
[16] | Jiang H R, Shyy W, Wu M C, Zhang R H, Zhao T S. A bi-porous graphite felt electrode with enhanced surface area and catalytic activity for vanadium redox flow batteries[J]. Appl. Energy, 2019, 233-234: 105-113. |
[17] | Abbas S, Mehboob S, Shin H J, Han O H, Ha H Y. Highly functionalized nanoporous thin carbon paper electrodes for high energy density of zero-gap vanadium redox flow battery[J]. Chem. Eng. J., 2019, 378: 122190. |
[18] |
Zhou X, Zhang X, Lv Y, Lin L, Wu Q. Nano-catalytic layer engraved carbon felt via copper oxide etching for vanadium redox flow batteries[J]. Carbon, 2019, 153: 674-681.
doi: 10.1016/j.carbon.2019.07.072 URL |
[19] |
Jiang H R, Shyy W, Zeng L, Zhang R H, Zhao T S. Highly efficient and ultra-stable boron-doped graphite felt electrodes for vanadium redox flow batteries[J]. J. Mater. Chem. A, 2018, 6(27): 13244-13253.
doi: 10.1039/C8TA03388A URL |
[20] | Xu Z Y, Zhu M D, Zhang K Y, Zhang X H, Xu L X, Liu J G, Liu T, Yan C A W. Inspired by “quenching-cracking” strategy: Structure-based design of sulfur-doped graphite felts for ultrahigh-rate vanadium redox flow batteries[J]. Energy Storage Mater., 2021, 39: 166-175. |
[21] |
He Z Q, Zhou X J, Zhang Y, Jiang F J, Yu Q C. Low-temperature nitrogen-doping of graphite felt electrode for vanadium redox flow batteries[J]. J. Electrochem. Soc., 2019, 166(12): A2336-A2340.
doi: 10.1149/2.0151912jes URL |
[22] | Wang R, Li Y S, Wang Y N, Fang Z. Phosphorus-doped graphite felt allowing stabilized electrochemical interface and hierarchical pore structure for redox flow battery[J]. Appl. Energy, 2020, 261: 114369. |
[23] |
Li B, Gu M, Nie Z M, Shao Y Y, Luo Q T, Wei X L, Li X L, Xiao J, Wang C M, Sprenkle V, Wang W. Bismuth nanoparticle decorating graphite felt as a high-performance electrode for an all-vanadium redox flow battery[J]. Nano Lett., 2013, 13(3): 1330-1335.
doi: 10.1021/nl400223v pmid: 23398147 |
[24] |
Wei L, Zhao T S, Zeng L, Zhou X L, Zeng Y K. Copper nanoparticle-deposited graphite felt electrodes for all vanadium redox flow batteries[J]. Appl. Energy, 2016, 180: 386-391.
doi: 10.1016/j.apenergy.2016.07.134 URL |
[25] | Jiang Y Q, Feng X J, Cheng G, Li Y H, Li C C, He Z X, Zhu J, Meng W, Zhou H Z, Dai L, Wang L. Electrocatalytic activity of MnO2 nanosheet array-decorated carbon paper as superior negative electrode for vanadium redox flow batteries[J]. Electrochim. Acta, 2019, 322: 134754. |
[26] |
Yun N, Park J J, Park O O, Lee K B, Yang J H. Electrocatalytic effect of NiO nanoparticles evenly distributed on a graphite felt electrode for vanadium redox flow batteries[J]. Electrochim. Acta, 2018, 278: 226-235.
doi: 10.1016/j.electacta.2018.05.039 URL |
[27] |
Hou B X, Cui X M, Chen Y G. In situ TiO2 decorated carbon paper as negative electrode for vanadium redox battery[J]. Solid State Ion., 2018, 325: 148-156.
doi: 10.1016/j.ssi.2018.08.006 URL |
[28] |
Xie X, Xiang Y, Daoud W A. MoO3-deposited graphite felt for high-performance vanadium redox flow batteries[J]. ACS Appl. Energ. Mater., 2020, 3(11): 10463-10476.
doi: 10.1021/acsaem.0c01479 URL |
[29] | Opar D O, Nankya R, Lee J, Jung H. Assessment of three-dimensional nitrogen-doped mesoporous graphene functionalized carbon felt electrodes for high-performance all vanadium redox flow batteries[J]. Appl. Surf. Sci., 2020, 531: 147391. |
[30] |
Zhang X Y, Wu Q X, Lv Y H, Li Y L, Zhou X L. Binder-free carbon nano-network wrapped carbon felt with optimized heteroatom doping for vanadium redox flow batteries[J]. J. Mater. Chem. A, 2019, 7(43): 25132-25141.
doi: 10.1039/C9TA08859H URL |
[31] | Jiang F J, He Z Q, Guo D Y, Zhou X J. Carbon aerogel modified graphite felt as advanced electrodes for vanadium redox flow batteries[J]. J. Power Sources, 2019, 440: 227114. |
[32] | Daugherty M C, Gu S, Aaron D S, Chandra Mallick B, Gandomi Y A, Hsieh C T. Decorating sulfur and nitrogen co-doped graphene quantum dots on graphite felt as high-performance electrodes for vanadium redox flow batteries[J]. J. Power Sources, 2020, 477: 228709. |
[33] |
Daugherty M C, Gu S, Aaron D S, Kelly R E, Ashraf Gandomi Y, Hsieh C T. Graphene quantum dot-decorated carbon electrodes for energy storage in vanadium redox flow batteries[J]. Nanoscale, 2020, 12(14): 7834-7842.
doi: 10.1039/d0nr00188k pmid: 32222752 |
[34] |
Sedenho G C, De Porcellinis D, Jing Y, Kerr E, Mejia-Mendoza L M, Vazquez-Mayagoitia A, Aspuru-Guzik A, Gordon R G, Crespilho F N, Aziz M J. Effect of molecular structure of quinones and carbon electrode surfaces on the interfacial electron transfer process[J]. ACS Appl. Energ. Mater., 2020, 3(2): 1933-1943.
doi: 10.1021/acsaem.9b02357 URL |
[35] |
Permatasari A, Shin J W, Lee W, An J, Kwon Y. The effect of plasma treated carbon felt on the performance of aqueous quinone-based redox flow batteries[J]. Int. J. Energ. Res., 2021, 45(12): 17878-17887.
doi: 10.1002/er.v45.12 URL |
[36] |
Gao F F, Li X Y, Zhang Y, Huang C D, Zhang W. Electrocatalytic activity of modified graphite felt in five anthraquinone derivative solutions for redox flow batteries[J]. ACS Omega, 2019, 4(9): 13721-13732.
doi: 10.1021/acsomega.9b01103 pmid: 31497689 |
[37] | Gao F F, Cai X H, Huang C D. The impact of modified electrode on the performance of an DHAQ/ K4Fe(CN)6 redox flow battery[J]. Electrochim. Acta, 2021, 390: 138847. |
[38] |
Wang H B, Maiyalagan T, Wang X. Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications[J]. ACS Catal., 2012, 2(5): 781-794.
doi: 10.1021/cs200652y URL |
[39] |
Zhang L P, Niu J B, Dai L, Xia Z H. Effect of microstructure of nitrogen-doped graphene on oxygen reduction activity in fuel cells[J]. Langmuir, 2012, 28(19): 7542-7550.
doi: 10.1021/la2043262 pmid: 22489601 |
[40] |
Deng S Y, Jian G Q, Lei J P, Hu Z, Ju H X. A glucose biosensor based on direct electrochemistry of glucose oxidase immobilized on nitrogen-doped carbon nanotubes[J]. Biosens. Bioelectron., 2009, 25(2): 373-377.
doi: 10.1016/j.bios.2009.07.016 pmid: 19683424 |
[41] |
Shao Y Y, Wang X Q, Engelhard M, Wang C M, Dai S, Liu J, Yang Z G, Lin Y H. Nitrogen-doped mesoporous carbon for energy storage in vanadium redox flow batteries[J]. J. Power Sources, 2010, 195(13): 4375-4379.
doi: 10.1016/j.jpowsour.2010.01.015 URL |
[42] | Chen H, Liang X, Liu Y P, Ai X, Asefa T, Zou X X. Active site engineering in porous electrocatalysts[J]. Adv. Mater., 2020, 32(44): 2002435. |
[43] | Liu T, Li X F, Nie H J, Xu C, Zhang H M. Investigation on the effect of catalyst on the electrochemical performance of carbon felt and graphite felt for vanadium flow batteries[J]. J. Power Sources, 2015, 286: 73-81. |
[44] |
Ding Z J, Zhao L, Suo L M, Jiao Y, Meng S, Hu Y S, Wang Z X, Chen L Q. Towards understanding the effects of carbon and nitrogen-doped carbon coating on the electrochemical performance of Li4Ti5O12 in lithium ion batteries: a combined experimental and theoretical study[J]. Phys. Chem. Chem. Phys., 2011, 13(33): 15127-15133.
doi: 10.1039/c1cp21513b URL |
[45] |
He Z X, Chen Z S, Meng W, Jiang Y Q, Cheng G, Dai L, Wang L. Modified carbon cloth as positive electrode with high electrochemical performance for vanadium redox flow batteries[J]. J. Energy Chem., 2016, 25(4): 720-725.
doi: 10.1016/j.jechem.2016.04.002 |
[1] | 郭鸿波, 王亚妮, 郭凯, 雷海涛, 梁作中, 张学鹏, 曹睿. 吸电子和亲水性Co-卟啉促进电催化氧还原反应的研究[J]. 电化学(中英文), 2022, 28(9): 2214002-. |
[2] | 祖延兵,查全性. Nafion膜表面亲水性研究[J]. 电化学(中英文), 1997, 3(1): 45-49. |
[3] | 李乃朝,衣宝廉,孔莲英,张恩俊,林化新,曲天锡,程英才. 熔融碳酸盐燃料电池研究[J]. 电化学(中英文), 1996, 2(1): 89-95. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||