电化学(中英文) ›› 2021, Vol. 27 ›› Issue (6): 637-645. doi: 10.13208/j.electrochem.201102
曹锦伟, 高楠, 高朝卿, 王晨, 尚胜艳, 王云鹏*(), 马海涛*()
收稿日期:
2020-11-05
修回日期:
2020-12-30
出版日期:
2021-12-28
发布日期:
2021-01-12
通讯作者:
王云鹏,马海涛
E-mail:yunpengw@dlut.edu.cn;htma@dlut.edu.cn
基金资助:
Jin-Wei Cao, Nan Gao, Zhao-Qing Gao, Chen Wang, Sheng-Yan Shang, Yun-Peng Wang*(), Hai-Tao Ma*()
Received:
2020-11-05
Revised:
2020-12-30
Published:
2021-12-28
Online:
2021-01-12
Contact:
Yun-Peng Wang,Hai-Tao Ma
E-mail:yunpengw@dlut.edu.cn;htma@dlut.edu.cn
摘要:
阳极氧化法制备具有纳米多孔结构的阳极氧化铁膜因其潜在的应用价值而倍受关注。然而,在阳极氧化过程中多孔结构的形成机制至今尚不清楚。本文结合电流密度-电位响应(I-V曲线)及法拉第定律的推导,分析了形成纳米多孔阳极氧化铁膜的过程中阳极电流的组成。结果表明,离子电流(导致离子迁移形成氧化物)和电子电流(导致析出氧气)共同组成阳极电流,并且纳米多孔阳极氧化铁膜的形成与两种电流的占比相关。分段式氧化物之间的空腔以及在阳极氧化初期纳米孔道上覆盖的致密膜,表明氧气泡可能是从氧化膜内部析出。此时,阳离子和阴离子绕过作为模具的氧气泡实现传质,最终导致纳米多孔结构的形成。此外,在阳极氧化铁膜形貌演变过程中,氧气泡不断向外溢出会使表面氧化物被冲破,导致表面孔径不断增大。
曹锦伟, 高楠, 高朝卿, 王晨, 尚胜艳, 王云鹏, 马海涛. 纳米多孔阳极氧化铁膜的形成及其形貌演变[J]. 电化学(中英文), 2021, 27(6): 637-645.
Jin-Wei Cao, Nan Gao, Zhao-Qing Gao, Chen Wang, Sheng-Yan Shang, Yun-Peng Wang, Hai-Tao Ma. Formation and Morphological Evolution of Nanoporous Anodized Iron Oxide Films[J]. Journal of Electrochemistry, 2021, 27(6): 637-645.
[1] |
Cesar I, Kay A, Martinez J A, Gratzel M. Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight: nanostructure-directing effect of Si-doping[J]. J. Am. Chem. Soc., 2006, 128(14): 4582-4583.
doi: 10.1021/ja060292p URL |
[2] |
Saha S, Kumar J S, Murmu N C, Samanta P, Kuila T. Con-trolled electrodeposition of iron oxide/nickel oxide@Ni for the investigation of the effects of stoichiometry and particle size on energy storage and water splitting applications[J]. J. Mater. Chem. A, 2018, 6(20): 9657-9664.
doi: 10.1039/C8TA00795K URL |
[3] | Wang Y(王尧), Wei Z D(魏子栋). Recent process in transition-metal-oxide based catalysts for oxygen reduction reaction[J]. J. Electrochem.(电化学), 2018, 24(5): 427-443. |
[4] |
An K, Kwon S G, Park M, Na H B, Baik S I, Yu J H, Kim D, Son J S, Kim Y W, Song I C, Moon W K, Park H M, Hyeon T. Synjournal of uniform hollow oxide nanoparticles through nanoscale acid etching[J]. Nano Lett., 2008, 8(12): 4252-4258.
doi: 10.1021/nl8019467 URL |
[5] | Prakasam H E, Varghese O K, Paulose M, Mor G K, Grimes C A. Synjournal and photoelectrochemical properties of nano-porous iron(III) oxide by potentiostatic anodization[J]. Nano-technology, 2006, 17(17): 4285-4291. |
[6] |
Azevedo J, Fernandez-Garcia M P, Magen C, Mendes A, Araujo J P, Sousa C T. Double-walled iron oxide nanotubes via selective chemical etching and Kirkendall process[J]. Sci. Rep., 2019, 9: 11994.
doi: 10.1038/s41598-019-47704-5 pmid: 31427675 |
[7] |
Jia C J, Sun L D, Yan Z G, You L P, Luo F, Han X D, Pang Y C, Zhang Z, Yan C H. Single-crystalline iron oxide nanotubes[J]. Angew. Chem. Int. Ed., 2005, 44(28): 4328-4333.
doi: 10.1002/(ISSN)1521-3773 URL |
[8] |
Kleinfeldt L, Gädke J, Biedendieck R, Krull R, Garnweitner, G. Spray-dried hierarchical aggregates of iron oxide nanoparticles and their functionalization for downstream processing in biotechnology[J]. ACS Omega, 2019, 4(15): 16300-16308.
doi: 10.1021/acsomega.9b01549 pmid: 31616807 |
[9] |
Zhang T, Ling Z. Template-assisted fabrication of Ni nano-wire arrays for high efficient oxygen evolution reaction[J]. Electrochim. Acta, 2019, 318: 91-99.
doi: 10.1016/j.electacta.2019.06.063 |
[10] |
Zhang C, Li L Y, Tuan C C, Zhou J, Xue F, Wong C P. A high-performance TiO2 nanotube supercapacitor by tuning heating rate during H2 thermal annealing[J]. J. Mater. Sci. Mater. Electron., 2018, 29(17): 15130-15137.
doi: 10.1007/s10854-018-9654-3 URL |
[11] | Zhu X F(朱绪飞), Han H(韩华), Song Y(宋晔), Duan W Q(段文强). Research progress in formation mechanism of TiO2 nanotubes and nanopores in porous anodic oxide[J]. Acta Phys. - Chim. Sin.(物理化学学报), 2012, 28: 1291-1305. |
[12] | Lian S T(廉思甜), Lv J S(吕建帅), Yu Q(于强), Hu G W(胡光武), Chen Z(陈卓), Zhou L(周亮), Mai L Q(麦立强). Recent progress on TiO2-based anode materials for sodium-ion batteries[J]. J. Electrochem.(电化学), 2019, 25(1): 31-44. |
[13] | Ban D L(班达里), La S N(拉克什马南). The field water flushing voltage recovery and pollutant removal. China, CN 109860636A[P]. 2012. 10.17. |
[14] | Gong C(弓程), Zhang Z Y(张泽阳), Xiang S W(向思弯), Sun L(孙岚), Ye C Q(叶陈清), Lin C J(林昌健). Electrochemical preparation and photocatalytic performance of LaNiO3/TiO2 nanotube arrays[J]. J. Electrochem.(电化学), 2019, 25(6): 682-689. |
[15] |
Jiang W J, Zeng W Y, Ma Z S, Pan Y, Lin J G, Lu C S. Advanced amorphous nanoporous stannous oxide composite with carbon nanotubes as anode materials for lithium-ion batteries[J]. RSC Adv., 2014, 4(78): 41281-41286.
doi: 10.1039/C4RA06968D URL |
[16] |
Konno Y, Tsuji E, Skeldon P, Thompson G E, Habazaki H. Factors influencing the growth behaviour of nanoporous anodic films on iron under galvanostatic anodizing[J]. J. Solid State Electro., 2012, 16(12): 3887-3896.
doi: 10.1007/s10008-012-1833-1 URL |
[17] |
Albu S P, Ghicov A, Schmuki P. High aspect ratio, self-ordered iron oxide nanopores formed by anodization of Fe in ethylene glycol/NH4F electrolytes[J]. Phys. Status Solidi-R., 2010, 3(2-3): 64-66.
doi: 10.1002/pssr.v3:2/3 URL |
[18] |
Choi Y W, Shin S, Park D W, Choi J. Surface treatment of iron by electrochemical oxidation and subsequent annealing for the improvement of anti-corrosive properties[J]. Curr. Appl. Phys., 2014, 14(5): 641-648.
doi: 10.1016/j.cap.2014.02.014 URL |
[19] |
Rozana M, Razak K A, Yew C K, Lockman Z, Kawamura G, Matsuda A. Annealing temperature-dependent crystallinity and photocurrent response of anodic nanoporous iron oxide film[J]. J. Mater. Res., 2016, 31(12): 1681-1690.
doi: 10.1557/jmr.2016.206 URL |
[20] |
Rangaraju R R, Panday A, Raja K S, Misra M. Nanostructured anodic iron oxide film as photoanode for water oxidation[J]. J. Phys. D Appl. Phys., 2009, 42(13): 135303.
doi: 10.1088/0022-3727/42/13/135303 URL |
[21] |
Zhang Z, Hossain M F, Takahashi T. Self-assembled hematite (α-Fe2O3) nanotube arrays for photoelectrocata-lytic degradation of azo dye under simulated solar light irradiation[J]. Appl. Catal. B - Environ., 2010, 95: 423-429.
doi: 10.1016/j.apcatb.2010.01.022 URL |
[22] |
Pawlik A, Hnida K, Socha R P, Wiercigroch E, Malek K, Sulka G D. Effects of anodizing conditions and annealing temperature on the morphology and crystalline structure of anodic oxide layers grown on iron[J]. Appl. Surf. Sci., 2017, 426(31): 1084-1093.
doi: 10.1016/j.apsusc.2017.07.156 URL |
[23] |
Xie K Y, Li J, Lai Y Q, Lu W, Zhang Z A, Liu Y X, Zhou L M, Huang H T. Highly ordered iron oxide nano-tube arrays as electrodes for electrochemical energy storage[J]. Electrochem. Commun., 2011, 13(6): 657-660.
doi: 10.1016/j.elecom.2011.03.040 URL |
[24] |
Yu M S, Cui H M, Ai F P, Jiang L F, Kong J S, Zhu X F. Terminated nanotubes: Evidence against the dissolution equilibrium theory[J]. Electrochem. Commun., 2017, 86: 80-84.
doi: 10.1016/j.elecom.2017.11.025 URL |
[25] |
Yu M S, Li C, Yang Y B, Xu S K, Zhang K, Cui H M, Zhu X F. Cavities between the double walls of nanotubes: Evidence of oxygen evolution beneath an anion-contaminated layer[J]. Electrochem. Commun., 2018, 90: 34-38.
doi: 10.1016/j.elecom.2018.03.009 URL |
[26] |
Yu M S, Chen Y, Li C, Yan S, Cui H M, Zhu X F, Kong J S. Studies of oxide growth location on anodization of Al and Ti provide evidence against the field-assisted dissolution and field-assisted ejection theories[J]. Electrochem. Commun., 2018, 87: 76-80.
doi: 10.1016/j.elecom.2018.01.003 URL |
[27] |
Zhao S W, Wu L Z, Li C, Li C Y, Yu M S, Cui H M, Zhu X F. Fabrication and growth model for conical alumina nanopores - evidence against field-assisted dissolution theory[J]. Electrochem. Commun., 2018, 93: 25-30.
doi: 10.1016/j.elecom.2018.05.029 URL |
[28] |
Zhang J J, Huang W Q, Zhang K, Li D Z, Xu H Q, Zhu X F. Bamboo shoot nanotubes with diameters increasing from top to bottom: Evidence against the field-assisted dissolution equilibrium theory[J]. Electrochem. Commun., 2019, 100: 48-51.
doi: 10.1016/j.elecom.2019.01.019 URL |
[29] |
Zhang K, Cao S K, Li C, Qi J R, Jiang L F, Zhang J J, Zhu X F. Rapid growth of TiO2 nanotubes under the compact oxide layer: Evidence against the digging manner of dissolution reaction[J]. Electrochem. Commun., 2019, 103: 88-93.
doi: 10.1016/j.elecom.2019.05.015 |
[30] | Zhou Q Y, Tian M M, Ying Z R, Dan Y X, Tang F R, Zhang J P, Zhu J W, Zhu X F. Dense films formed during Ti anodization in NH4F electrolyte: evidence against the feld-assisted dissolution reactions of fluoride ions[J]. Ele-ctrochem. Commun., 2020, 111: 106663. |
[31] | Garcia-Vergara S J, Habazaki H, Skeldon P, Thompson G E. Tracer studies relating to alloying element behaviour in porous anodic alumina formed in phosphoric acid[J]. Electrochim. Acta, 2010, 55(9): 175-3184. |
[32] |
Garcia-Vergara S J, Skeleton P, Thompson G E, Habakaki H. Tracer studies of anodic films formed on aluminium in malonic and oxalic acids[J]. Appl. Surf. Sci., 2007, 254(5): 1534-1542.
doi: 10.1016/j.apsusc.2007.07.006 URL |
[33] |
Zhou Q Y, Niu D M, Feng X J, Wang A C, Ying Z R, Zhang J P, Lu N, Zhu J W, Zhu X F. Debunking the effect of water content on anodizing current: Evidence against the traditional dissolution theory[J]. Electrochem. Commun., 2020, 119: 106815.
doi: 10.1016/j.elecom.2020.106815 URL |
[34] |
Curioni M, Skeldon P, Thompson G E. Anodizing of aluminum under nonsteady conditions[J]. J. Electro-chem. Soc., 2009, 156(12): C407-C413.
doi: 10.1149/1.3230642 URL |
[35] |
Di Franco F, Zampardi G, Santamaria M, Di Quarto F, Habazaki H. II Characterization of the solid state properties of anodic oxides on magnetron sputtered Ta, Nb and Ta-Nb alloys[J]. J. Electrochem. Soc., 2011, 159(1): C33-C39.
doi: 10.1149/2.031201jes URL |
[36] |
Santamaria M, Quarto F D, Zanna S, Marcus P. The influence of surface treatment on the anodizing of magnesium in alkaline solution[J]. Electrochim. Acta, 2011, 56(28): 10533-10542.
doi: 10.1016/j.electacta.2011.05.027 URL |
[37] | Zhang Z Y, Wang Q, Xu H Q, Zhang W C, Zhou Q Y, Zeng H P, Yang J L, Zhu J W, Zhu X F. TiO2 nanotubes arrays with a volume expansion factor greater than 2.0: Evidence against the field-assisted ejection theory[J]. Ele-ctrochem. Commun., 2020, 114: 106717. |
[38] |
Oh J, Thompson C V. The role of electric field in pore formation during aluminum anodization[J]. Electrochim. Acta, 2011, 56(11): 4044-4051.
doi: 10.1016/j.electacta.2011.02.002 URL |
[39] |
Zhu X F, Liu L, Song Y, Jia H B, Yu H D, Xiao X M, Yang X L. Oxygen bubble mould effect: serrated nano-pore formation and porous alumina growth[J]. Monatsh. Chem., 2008, 139(9): 999-1003.
doi: 10.1007/s00706-008-0893-5 URL |
[40] |
Lee W, Park S J. Porous anodic aluminum oxide: anodization and templated synjournal of functional nanostructures[J]. Chem. Rev., 2014, 114(15): 7487-7556.
doi: 10.1021/cr500002z URL |
[41] |
Cao J W, Gao Z Q, Wang C, Muzammal H M, Wang W Q, Gu Q D, Dong C, Ma H T, Wang Y P. Morphology evolution of the anodized tin oxide film during early formation stages at relatively high constant potential[J]. Surf. Coat. Tech., 2020, 388: 125592.
doi: 10.1016/j.surfcoat.2020.125592 URL |
[1] | 况先银, 金少强, 曹艳辉, 张艳梅, 董士刚, 朱龙晖, 林理文, 林昌健. 铝合金表面改性对有机涂层附着力的影响及腐蚀防护性能研究[J]. 电化学(中英文), 2021, 27(6): 624-636. |
[2] | 马武威, 常启刚, 史雄芳, 童延斌, 周立, 叶邦策, 鲁建江, 赵金虎. 基于纳米孔金与离子印迹聚合物结合的新型电化学传感器用于测定砷离子(III)[J]. 电化学(中英文), 2020, 26(6): 900-910. |
[3] | 郑志林,袁晓姿,尹屹梅,马紫峰. 燃料电池反应器在化学品与电能共生中应用[J]. 电化学(中英文), 2018, 24(6): 615-627. |
[4] | 张媛媛,易清风,左葛琨琨,邹涛,刘小平,周秀林. 铅修饰的纳米多孔铂催化剂对甲酸氧化的电活性[J]. 电化学(中英文), 2018, 24(3): 270-278. |
[5] | 李照华, 褚有群, 马淳安. Ce3+/Ce4+电对在硫酸和甲磺酸介质中电化学性能的差异[J]. 电化学(中英文), 2013, 19(2): 141-145. |
[6] | 冯时, 陈述, 杨青, 向娟. 超薄纳米多孔金膜的制备及其局域表面等离子体效应研究[J]. 电化学(中英文), 2013, 19(2): 151-154. |
[7] | 林成钢, 林泽泉, 李静, 林昌健. 钴离子(Co2+)掺杂TiO2纳米管阵列的光生阴极保护行为[J]. 电化学(中英文), 2011, 17(3): 312-317. |
[8] | Robert M.Amussen, Peter Holt-Hindle, Samantha Nigro, . 纳米多孔Pt,PtRu及PtRuIr催化剂的电化学FTIR光谱之比较(英文)[J]. 电化学(中英文), 2010, 16(3): 263-272. |
[9] | 张芹, 阴启明, 叶嘉明, 朱元荣, . 一步阳极氧化法制备超亲水氧化铝[J]. 电化学(中英文), 2008, 14(4): 446-449. |
[10] | 刘召娜, 张进涛, 田芳, 刘朋朋, 马厚义, 丁轶, . 高效铂-纳米多孔金催化剂的设计和制备[J]. 电化学(中英文), 2008, 14(3): 273-277. |
[11] | 李静, 云虹, 林昌健, . TiO_2纳米管阵列的制备及其对316不锈钢光生阴极保护作用的研究[J]. 电化学(中英文), 2007, 13(4): 367-371. |
[12] | 黄金昭;徐征;李海玲;亢国虎;王文静;. 氧化铁镍电极上析氧反应的电化学研究(英文)[J]. 电化学(中英文), 2006, 12(2): 154-158. |
[13] | 成银梅;蔡兰坤;宋强;. 镀锡电解液中有机添加剂的电化学氧化[J]. 电化学(中英文), 2005, 11(4): 450-452. |
[14] | 刘玲,周琴,贾能勤,江志裕. 纳米电容器的组建及电化学性能[J]. 电化学(中英文), 2005, 11(2): 125-128. |
[15] | 武朋飞,李谋成,沈嘉年,肖美群,刘东. 阳极氧化法制备光电化学防腐蚀二氧化钛薄膜[J]. 电化学(中英文), 2004, 10(3): 353-358. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||