[1] Liu W,Huang J J. Electro-oxidation of formic acid on carbon supported Pt-Os catalyst[J]. Journal of Power Sources, 2009, 189(2): 1012-1015.
[2] Kim B J,Kwon K,Rhee C K,et al. Modification of Pt nanoelectrodes dispersed on carbon support using irreversible adsorption of Bi to enhance formic acid oxidation[J]. Electrochimica Acta, 2008, 53(26): 7744-7750.
[3] Joo J,Uchida T,Cuesta A,et al. Importance of acid-based equilibrium in electrocatalytic oxidation of formic acid on platinum[J]. Journal of the American Chemical Society, 2013, 135(27): 9991-9994.
[4] Wang H F,Liu Z P. Formic acid oxidation at Pt/H2O interface from periodic DFT calculations integrated with a continuum solvation mode[J]. Journal of Physical Chemistry C, 2009, 113(40): 17502-17508.
[5] Gao W,Keith J A,Anton J,et al. Theoretical elucidation of the competitive electro-oxidation mechanisms of formic acid on Pt (111)[J]. Journal of the American Chemical Society, 2010, 132(51): 18377-18385.
[6] Chen Y X,Ye S,Heinen M,et al. Application of in-situ attenuated total reflection-Fourier transfer infrared spectroscopy for the understanding of complex reaction mechanism and kinetics: Formic acid oxidation on a Pt film electrode at elevated temperatures[J]. Journal of Physical Chemistry B, 2006, 110(19): 9534-9544.
[7] Chen Y X,Heinen M,Jusys Z,et al. Kinetics and mechanism of the electrooxidation of formic acid-spectroelectrochemical studies in a flow cell[J]. Angewandte Chemie-International Edition,2006,45(6): 981-985.
[8] Mantharan R,Goodenough J B. Methanol oxidation in acid on ordered NiTi[J]. Journal of Materials Chemistry,1992, 2(8): 875-887.
[9] He D P,Jiang Y L,Lv H F,et al. Nitrogen-doped reduced graphene oxide supports for noble metal catalysts with greatly enhanced activity and stability[J]. Applied Catalysis B-Environmental, 2013, 132(1): 379-388.
[10] Zhu J J,Xiao P,Li H L,et al. Graphitic carbon nitride: Synthesis,properties,and applications in catalysis[J]. Applied Catalysis B-Environmental, 2014, 6(19): 16449-16465.
[11] Wei X B,Shao C L,Li X H,et al. Facile in situ synthesis of plasmonic nanoparticles decorated g-C3N4/TiO2 heterojunction nanofibers and comparison study of their photosynergistic effects for efficient photocatalytic H2 evolution[J]. Nanoscale, 2016, 8(1): 11034-11043.
[12] Xue J J,Ma S S,Zhou Y M,et al. Facile photochemical synthesis of Au/Pt/g-C3N4 with plasmon-enhanced photocatalytic activity for antibiotic degradation[J]. ACS Applied Materials & Interfaces, 2015, 7(18): 9630-9637.
[13] Kessler F K,Zheng Y,Schwarz D,et al. Functional carbon nitride materials-design strategies for electrochemical devices[J]. Nature Materials, 2017, 2(1): 1-17.
[14] Sagara N,Kamimura S,Tsubota T,et al. Photoelectrochemical CO2 reduction by a p-type boron-doped g-C3N4 electrode under visible light[J]. Applied Catalysis B: Environmental, 2016, 192(1): 193-198.
[15] Gu D M,Chu Y Y,Wang Z B,et al. Methanol oxidation on Pt/CeO2-C electrocatalyst prepared by microwave-assisted ethylene glycol process[J]. Applied Catalysis B: Environmental, 2011, 102(1): 9-18.
[16] Samanta S, Martha S, Parida K. Facile synthesis of Au/g-C3N4 nanocomposites: An inorganic/organic hybrid plasmonic photocatalyst with enhanced hydrogen gas evolution under visible-light irradiation[J]. ChemCatChem, 2014, 6(5): 1453-1462.
[17] Han C C,Wu L N,Ge L,et al. AuPd bimetallic nanoparticles decorated graphitic carbon nitride for highly efficient reduction of water to H2 under visible light irradiation[J]. Carbon, 2015, 92(1): 31-40.
[18] Hammer B,Norskov J K. Electronic factors determining the reactivity of metal surfaces[J]. Surfce Science,1995, 343(3): 211-220.
[19] Jin R R(金瑞瑞), You J G(游继光), Zhang Q(张倩),et al. Preparation of Fe-doped graphitic carbon nitride with enhanced visible-light photocatalytic activity[J]. Acta Physico-Chimica Sinica(物理化学学报) 2014,30(9): 1706-1712.
[20] Zhang Z H, Yu Y J, Wang P. Hierarchical top-porous/bottom-tubular TiO2 nanostructures decorated with Pd nanoparticles for efficient photoelectrocatalytic decomposition of synergistic pollutants[J]. ACS Applied Materials & Interfaces, 2012, 4(2): 990-996.
[21] Xu J (徐杰), Jiang D C (江道传), Mei D (梅东), et al. Recent process in the mechanistic understanding of formic acid oxidation on Pt electrode[J]. Journal of Electrochemistry(电化学), 2014, 20(4): 333-342.
[22] Xia X H(夏兴华), Iwasita T, Vielstich W. Study of the nature of formic acid adsorbates on rough Pt and its interaction with CO[J]. Journal of Electrochemistry(电化学), 1997, 3(1): 26-39.
[23] Yang S D(杨苏东), Liang Y Y(梁彦瑜), Wen Z L(温祝亮), et al. Comparison of catalytic performance on different materials supported Pd catalysts for formic acid oxidation[J]. Journal of Electrochemistry(电化学), 2011, 17(2): 175-179. |