欢迎访问《电化学(中英文)》期刊官方网站,今天是

电化学(中英文) ›› 2017, Vol. 23 ›› Issue (5): 507-532.  doi: 10.13208/j.electrochem.170348

• 超级电容器近期研究专辑(南京航空航天大学 张校刚教授主编) • 上一篇    下一篇

超级电容器能量密度的提升策略

郎俊伟1,张旭2,王儒涛1,阎兴斌1,2*   

  1. 1. 中国科学院兰州化学物理研究所清洁能源化学与材料实验室,兰州730000; 2. 青岛市资源化学与新材料研究中心,青岛266071
  • 收稿日期:2017-06-13 修回日期:2017-07-25 出版日期:2017-10-28 发布日期:2017-10-28
  • 通讯作者: 阎兴斌 E-mail:xbyan@licp.cas.cn
  • 基金资助:
    国家自然科学基金项目(21673263, 21573265)、青岛市自主创新计划基金项目(16-5-1-42-jch)和西部博士基金项目资助

Strategies to Enhance Energy Density for Supercapacitors

LANG Jun-wei1, ZHANG Xu2, WANG Ru-tao1, YAN Xing-bin1,2*   

  1. 1.Laboratory of Clean Energy Chemistry and Materials, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Lanzhou 730000, P. R. China; 2.Qingdao Center of Resource Chemistry & New Materials, Qingdao 266000, P.R. China
  • Received:2017-06-13 Revised:2017-07-25 Published:2017-10-28 Online:2017-10-28
  • Contact: YAN Xing-bin E-mail:xbyan@licp.cas.cn

摘要: 超级电容器最大的优点是具有优良的脉冲充放电性能和快速充放电性能,同时具有循环寿命长、工作温度范围宽、安全无污染等特性,但能量密度较低. 本文对超级电容器的工作原理、发展状况、缺陷所在和改进方法进行了简要介绍,以本课题组在高比能超级电容器方面的研究工作为主线,结合近几年的文献报道,重点阐述了超级电容器能量密度的提升策略. 主要围绕以下三个方面开展了工作:1)通过将电极材料尺寸纳米化来提高传统电极材料的比容量或开发其他高比容量的电极材料;2)发展具有高电压窗口的离子液体电解液,或利用不同材料在不同电位区间的电容特性构筑不对称电容器,从而提高超级电容器的电压窗口;3)将超级电容器和锂离子电池进行“内部交叉”构筑兼具高能量密度和高功率密度的锂离子混合电容器. 最后,对超级电容器的发展进行了展望.

Abstract: The biggest advantage of supercapacitor lies in not only the excellent pulse and fast charging-discharging performance, but also the characteristics of long cycle life and wide operating temperature window with no pollution. However, the energy density of supercapacitor is low. In this paper, the working principle, the development status, defects and improvement method of supercapacitors are introduced. Based on the research workes of the supercapacitors with high energy density in our group, combined with the literature reports in recent years, the strategies to promote the energy density of supercarpacitors will be focused. The strategies for the enhancement of energy density include: 1) to increase the specific capacitance of the electrode by reducing the existing materials to nano sizes or to develop new materials with high capacity; 2) to increase the voltage window of the supercapacitor by developing ionic liquid electrolyte with high voltage window or to adopt asymmetric supercapacitors in which one electrode is pseudocapacitive, while the other utilizes double layer capacitance; 3) to build lithium ion hybrid supercapacitors with both high energy density and high power density by “internal cross” the supercapacitor and lithium ion battery. Finally, the prospects in the future development of supercapacitors will be provided.

Key words: supercapacitor, asymmetric supercapacitor, lithium-ion hybrid supercapacitor, energy density, power density

中图分类号: