[1] Becker H I. Low voltage electrolytic capacitor. United States Patent, 2800616[P].1957.
[2] Rightmire A R. Electrical energy storage apparatus. United States Patent, 3288641[P].1966.
[3] Sekido S (関户聡), Yoshino Y (吉野庸三), Muranaka T (村中孝義), et al. A electric double layer capacitor using organic electrolyte[J]. Denki Kagaku (電気化学), 1980, 48(1): 40-45.
[4] Hiratsuka K (平塚和也), Sanada Y (真田恭宏), Morimoto T (森本剛), et al. Evaluation of Activated Carbon Electrodes for Electric Double Layer Capacitors Using an Organic Electrolyte Solution[J]. Denki Kagaku (電気化学), 1991, 59(7): 607-613.
[5] Tanahashi I, Yoshida A, Nishino A. Electrochemical characterization of activated carbon fiber cloth polarizable electrodes for electric double-layer capacitors[J]. J. Electrochem. Soc., 1990, 137(10): 3052-3057.
[6] Morimoto T, Hiratsuka K, Sanada Y, et al. Electric double-layer capacitor using organic electrolyte[J]. J. Power Sources, 1996, 60(2): 239-247.
[7] Yata Y, Okamoto E, Satake H, et al. Polyacene capacitors [J]. J. Power Sources, 1996, 60(2): 207-212.
[8] Amatucci G G, Badway F, DuPasquier A, et al. An asymmetric hybrid nonaqueous energy storage cell[J]. J. Electrochem. Soc., 2001, 148(8): A930-A939.
[9] Yoshino. A, Tsubata T, Shimoyamada M, et al. Development of a lithium-type advanced energy storage device[J]. J. Electrochem. Soc., 2004, 151(12): A2180-A2182.
[10] Li H, Cheng Li, Xia Y Y. A hybrid electrochemical supercapacitor based on a 5V Li-ion battery cathode and activated carbon[J]. Electrochem. & Solid-State Lett., 2005, 8(9): A433-A436.
[11] Wang H, Yoshio M. Graphite, a suitable positive electrode material for high-energy electrochemical capacitors[J]. Electrochem. Commun., 2006, 8(9): 1481-1486.
[12] Wang H, Yoshio M, Thapa A K, et al. From symmetrical AC/AC to asymmetric AC/graphite, a progress in electrochemical capacitors[J]. J. Power Sources, 2007, 169(2): 375-380.
[13] Wang H, Yoshio M. Effect of cation on the performance of AC/graphite capacitors[J]. Electrochem. Commun., 2008, 10(3): 382-386.
[14] Wang H, Yoshio M. Performance of AC/graphite capacitors at high weight ratios of AC/graphite[J]. J. Power Sources, 2008, 177(2): 681-684.
[15] Wang H, Yoshio M. The effect of water contamination in the organic electrolyte on the performance of activated carbon/graphite capacitors[J]. J. Power Sources, 2010, 195(1): 389-392.
[16] Wang H, Yoshio M. KF6 dissolved in propylene carbonate as an electrolyte for activated carbon/graphite capacitors[J]. J. Power Sources, 2010, 195(4): 1263-1265.
[17] Wang H, Yoshio M. Suppression of PF6- intercalation into graphite by small amounts of ethylene carbonate in activated carbon/graphite capacitors[J]. Chem. Commun., 2010, 46(9): 1544-1546.
[18] Wang Y, Zheng C, Qi L, et al. Utilization of (oxalate)borate-based organic electrolytes in activated carbon/graphite capacitors[J]. J. Power Sources, 2011, 196(23): 10507-10510.
[19] Tian S, Qi L, Yoshio M, et al. Tetramethyl ammonium difluoro(oxalate)borate dissolved in ethylene/propylene carbonates as electrolytes for electrochemical capacitors[J]. J. Power Sources, 2014, 256: 404-409.
[20] Tian S, Qi L, Wang H. Difluoro(oxalate)borate anion intercalation into graphite electrode from ethylene carbonate[J]. Solid State Ionics, 2016, 291: 42-46.
[21] Gao J, Yoshio M, Qi L, et al. Solvation effect on intercalation behaviour of tetrafluoroborate into graphite[J]. J. Power Sources, 2015, 278: 452-457.
[22] Gao J, Tian S, Qi L, et al. Hexafluorophosphate intercalation into graphite electrode from gamma-butyrolactone solutions in activated carbon/graphite capacitors[J]. J. Power Sources, 2015, 297: 121-126.
[23] Gao J, Tian S, Qi L, et al. Intercalation manners of Perchlorate anion into graphite electrode from organic solutions[J]. Electrochim. Acta, 2015, 176: 22-27.
[24] Yoshio M, Nakamura H, Wang H. Novel megalo-capacitance capacitor based on graphitic carbon cathode[J]. Electrochem. & Solid-State Lett., 2006, 9(12): A561-A563.
[25] Besenhard J O, Winter M, Yang J, et al. Film mechanism of lithium-carbon anodes in organic and inorganic electrolytes[J], J. Power Sources, 1995, 54(2): 228-231.
[26] Chmiola J, Yushin G, Gogotsi Y, et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer[J]. Science, 2006, 313(5794): 1760-1763.
[27] Zhao L, Qi L, Wang H. Sodium titanate nanatube/graphite, an electric energy storage device using Na+-based organic electrolytes[J]. J. Power Sources, 2013, 242: 597-603.
[28] Zheng C, Yoshio M, Qi L, et al. A 4V-electrochemical capacitor using electrode and electrolyte materials free of metals[J]. J. Power Sources, 2014, 260: 19-26.
[29] Yin J, Qi L, Wang H. Sodium titanate nanatubes as negative electrode materials for sodium-ion capacitors[J]. ACS Appl. Mater. Interfaces, 2012, 4(5): 2762-2768.
[30] Zheng C, Gao J, Yoshio M, et al. Non-porous activated carbon microbeads as a negative electrode material for asymmetric electrochemical capacitors[J]. J. Power Sources, 2013, 231: 29-33.
[31] Brenner A. Note on an organic-electrolyte cell with a high voltage[J], J. Electrochem. Soc., 1971, 118(3):461-462.
[32]Dunning J S, Tiedemann W H; Hsueh L, et al. A secondary, nonaqeous solvent battery[J], J. Electrochem. Soc., 1971, 118(12): 1886-1890.
[33] Takada Y(高田怡行), Miyake Y(三宅義造). Behavior of some carbon electrodes in organic electrolytes[J], Denki Kagaku (電気化学), 1975, 43(6): 329-333.
[34] Deshpande S L, Bennion D N. Lithium dimethyl sulfite graphite cell[J], J. Electrochem. Soc., 1978, 125(5): 687-692.
[35]Ohzuku T(小槻勉), Takehara Z(竹原善一郎), Yoshizawa S(吉澤四郎). A graphite compound as a cathode for rechargeable nonaqueous lithium battery[J], Denki Kagaku (電気化学), 1978, 46(8): 438-441.
[36] Matsuda Y, Morita M, Katsuma H. Graphite fiber as a positive electrode of rechargeable lithium cells[J], J. Electrochem. Soc., 1984, 131(1): 104-106.
[37] Santhanam R, Noel M. Electrochemical intercalation of cationic and anionic species from a lithium percolate-propylene carbonate system—a rocking-chair type of dual-intercalation system[J], J. Power Sources, 1998, 76(2): 147-152.
[38] Placke T, Fromm O, Lux S F, et al. Reversible intercalation of bis(trifluoromethanesulfonyl)imide anions from an ionic liquid electrolyte into graphite for high performance dual-ion cells[J], J. Electrochem. Soc., 2012, 159(11) : A1755-A1765.
[39]Lin M, Gong M, Lu B, et al. An ultrafast rechargeable aluminium-ion battery[J], Nature, 2015, 520(7547): 325-328.
[40]Zhang X, Sukpirom N, Lerner M M. Graphite intercalation of bis(trifluoromethanesulfonyl)imide and other anions with perfluoroalkanesulfonyl substituents[J], Mater. Res. Bull., 1999, 34(3): 363-372.
[41]Yan W, Lerner M M. Electrochemical preparation of graphite bis(trifluoromethanesulfonyl)imide[J], J. Electrochem. Soc., 2001, 148(6): D83-D87.
[42]Seel J A, Dahn J R. Electrochemical intercalation of PF6- into graphite[J], J. Electrochem. Soc., 2000, 147(3): 892-898.
[43] Dahn J R, Seel J A. Energy and capacity projections for practical dual-graphite cells[J], J. Electrochem. Soc., 2000, 147(3): 899-901.
[44]Hahn M, Barbieri O, Gallay R, et al. A dilatometric study of the voltage limitation of carbonaceous electrodes in aprotic EDLC type electrolytes by charge-induced strain[J], Carbon, 2006, 44(12): 2523-2533.
[45] Hardwick L J, Hahn M, Ruch P, et al. An in situ Raman study of the intercalation of supercapacitor-type electrolyte into microcrystalline graphite[J], Electrochim. Acta, 2006, 52(2): 675-680.
[46]Ruch P W, Hahn M, Rosciano F, et al. A. In situ X-ray diffraction of the intercalation of (C2H5)4N+ and BF4- into graphite from acetonitrile and propylene carbonate based supercapacitor electrolytes[J], Electrochim. Acta, 2007, 53(3): 1074-1082.
[47] Placke T, Rothermel S, Fromm O, et al. Influence of graphite characteristics on the electrochemical intercalation of bis(trifluoromethanesulfonyl)imide anions into a graphite-based cathode[J], J. Electrochem. Soc., 2013, 160(11): A1979-A1991.
[48] Rothermel S, Meister P, Schmuelling G, et al. Dual-graphite cells based on the reversible intercalation of bis(trifluoromethanesulfonyl)imide anions from an ionic liquid electrolyte[J], Energy Environ. Sci., 2014, 7(10): 3412-3423.
[49] Meister P, Fromm O, Rothermel S, et al. Sodium-based vs.lithium-based dual-ion cells: electrochemical study of anion intercalation/de-intercalation into/from graphite and metal plating/dissolution behavior[J], Electrochim. Acta, 2017, 228:18-27.
[50] Ishihara T, Yokoyama Y, Kozono F, et al. Intercalation of PF6- anion into graphitic carbon with nano pore for dual carbon cell with high capacity[J], J. Power Sources, 2011, 196(16): 6956-6959.
[51] Miyoshi S, Nagano H, Fukuda T, et al. Dual-carbon battery using high concentration LiPF6 in dimethyl carbonate (DMC) electrolyte[J], J. Electrochem. Soc., 2016, 163(7): A1206-A1213.
[52] Thapa A K, Park G, Nakamura H, et al. Novel graphite/TiO2 electrochemical cells as a safe electric energy storage system[J], Electrochim. Acta, 2010, 55(24): 7305-7309.
[53] Gunawardhana N, Park G, Dimov N, et al. Constructing a novel and safer energy storing sytem using a graphite cathode and a MoO3 anode[J], J. Power Sources, 2011, 196(18): 7886-7890.
[54]Gunawardhana N, Park G, Thapa A K, et al. Performance of a graphite (KS-6)/MoO3 energy storing system[J], J. Power Sources, 2012, 203: 257-261.
[55]Park G, Gunawardhana N, Lee C, et al. Development of a novel and safer energy storage system using a graphite cathode and Nb2O5 anode[J], J. Power Sources, 2013, 236: 145-150.
[56] Li R (李然), Zhang H (张浩), Zhang X L (张香兰), et al. Preparations and capacitive performance of the anion intercalation graphite materials as positive electrode materials[J]. Chem. J of Chinese Universities (高等学校化学学报), 2013, 34(4): 959-963.
[57] Read J A, Cresce A V, Ervin M H, et al. Dual-graphite chemistry enabled by a high voltage electrolyte[J], Energy Environ. Sci., 2014, 7(2): 617-620.
[58] Read J A. In-situ studies on the electrochemical intercalation of hexafluorophosphate anion in graphite with selective cointercalation of solvent[J], J. Phys. Chem. C, 2015, 119(16): 8438-8446.
[59] Hu X (胡晓艳), Alice A, Yan J (颜佳伟), et al. Intercalation of ClO4- into HOPG investigated by EC-STM[J]. Journal of Electrochemistry (电化学), 2015, 21(6): 560-565.
[60] Zhang X, Tang Y, Zhang F, et al. A novel aluminum-graphite dual-ion battery[J], Adv. Energy Mater., 2016, 6(11), 1502588.
[61] Tong X, Zhang F, Ji B, et al. Carbon-coated porous aluminum foil anode for high-rate, long-term cycling stability, and high energy density dual –ion batteries[J], Adv. Mater., 2016, 28(45): 9979-9985.
[62] Qin P, Wang M, Li N, et al. Bubble-sheet-like interface design with an ultrastable solid electrolyte layer for high-performance dual-ion batteries[J], Adv. Mater., 2017, 1606805
[63] Sheng M, Zhang F, Ji B, et al. A novel tin-graphite dual-ion battery based on sodium-ion electrolyte with high energy density[J], Adv. Energy Mater., 2017, 1601963.
[64] Wang S, Jiao S, Tian D, et al. A novel ultrafast rechargeable multi-ions battery[J], Adv. Mater., 2017, 1606349.
[65] Wu M S, Xu B, Chen L Q, et al. Geometry and fast diffusion of AlCl4 cluster intercalated in graphite[J], Electrochim. Acta, 2016, 195: 158-165.
[66] Wu M S, Xu B, Ouyang C Y. Further discussions on the geometry and fast diffusion of AlCl4 cluster intercalated in graphite[J], Electrochim. Acta, 2017, 223: 137-139.
[67] Fan L, Liu Q, Chen S, et al. Soft carbon as anode for high-performance sodium-based dual-ion full battery[J], Adv. Energy Mater., 2017:1602778.
[68]Fan H, Gao J, Qi L, et al. Hexafluorophosphate anion intercalation into graphite electrode from sulfolane/ethylmethyl carbonate solutions[J]. Electrochim. Acta, 2016, 189: 9-15.
[69]Fan H, Qi L, Yoshio M, et al. Hexafluorophosphate intercalation into graphite electrode from ethylene carbonate/ethylmethyl carbonate [J]. Solid State Ionics, 2017, 304: 107-112.
[70] Fan H, Qi L, Wang H. Hexafluorophosphate anion intercalation into graphite electrode from methyl propionate[J]. Solid State Ionics, 2017, 300: 169-173.
[71] Zheng T, Reimers J N, Dahn J R. Effect of turbostratic disorder in graphitic carbon hosts on the intercalation of lithium[J], Phys. Rev. B, 1995, 51(2): 734-741.
[72] Takami N, Satoh A, Hara M, et al. Rechargeable lithium-ion cells using graphitized mesophase-pitch-based carbon fiber anodes[J], J. Electrochem. Soc., 1995, 142(8), 2564-2571.
[73] Zaghib K, Tatsumi K, Abe H, et al. Optimization of the dimensions of vapor-grown carbon fibers for use as negative electrodes in lithium-ion rechargeable cells[J], J. Electrochem. Soc., 1998, 145(1): 210-215. |