[1] Jarup L, Berglund M, Elinder C G, et al. Health effects of cadmium exposure-a review of the literature and a risk estimate[J]. Scandinavian Journal of Work Environment & Health, 1998, 24(1): 1-51.[2] Satarug S, Moore M R. Adverse health effects of chronic exposure to low-level cadmium in foodstuffs and cigarette smoke[J]. Environmental Health Perspectives, 2004, 112(10): 1099-1103.[3] Wilson M A, Johnston M V, Goldstein G W, et al. Neonatal lead exposure impairs development of rodent barrel field cortex[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(10): 5540-5545.[4] Verstraeten S V, Aimo L, Oteiza P, et al. Aluminium and lead: Molecular mechanisms of brain toxicity[J]. Archives of Toxicology, 2008, 82(11): 789-802.[5] Ronco A M, Gutierrez Y, Gras N, et al. Lead and arsenic levels in women with different body mass composition[J]. Biological Trace Element Research, 2010, 136(3): 269-278.[6] Olympio K P, Goncalves C, Gunther W M R, et al. Neurotoxicity and aggressiveness triggered by low-level lead in children: A review[J]. Revista Panamericana De Salud Publica-Pan American Journal of Public Health, 2009, 26(3): 266-275.[7] Gracia R C, Snodgrass W R. Lead toxicity and chelation therapy[J]. American Journal of Health-System Pharmacy, 2007, 64(1): 45-53.[8] Krieg E F, Chrislip D W, Brightwell W S. A meta-analysis of studies investigating the effects of lead exposure on nerve conduction[J]. Archives of Toxicology, 2008, 82(8): 531-542.[9] Hennebruder K, Wennrich R, Mattusch J, et al. Determination of gadolinium in river water by SPE preconcentration and ICP-MS[J]. Talanta, 2004, 63(2): 309-316.[10] Stosnach H. On-site analysis of heavy metal contaminated areas by means of total reflection X-ray fluorescence analysis (TXRF)[J]. Spectrochimica Acta-Part B, 2006, 61(10/11): 1141-1145.[11] Alexiu V, Vladescu L. The determination of the contamination level with lead and cadmium in sweet food samples by atomic absorption spectrometry with electrothermal atomization[J]. Review Chimica-Bucharest, 2003, 54(7): 557-560.[12] Beqa L, Singh A K, Khan S A, et al. Gold nanoparticle-based simple colorimetric and ultrasensitive dynamic light scattering assay for the selective detection of Pb(II) from paints, plastics, and water samples[J]. Acs Applied Materials & Interfaces, 2011, 3(3): 668-673.[13] Liu L, Huy N L, Wang J X, et al. Thickness-dependent morphologies and surface-enhanced raman scattering of Ag deposited on n-layer graphenes[J]. Electroanalysis, 2011, 115(23): 11348-11354.[14] Wang J. Analytical electrochemistry, 3rd ed.[M]. Wiley-VCH: Hoboken, NJ, 2006:[15] Long G G, Freedman L D, Doak G O. Encyclopedia of chemical technology[M]. New York, Wiley, 1978: 912-937.[16] Pacheco F W, Miguel E M, Ramos G V, et al. Use of hydrogen peroxide to achieve interference-free stripping voltammetric determination of copper at the bismuth-film electrode[J]. Analytica Chimica Acta, 2008, 625(1): 22-27.[17] Economou A, Voulgaropoulos A. Stripping voltammetry of trace metals at bismuth-film electrodes by batch-injection analysis[J]. Electroanalysis, 2010, 22(13): 1468-1475.[18] Korolczuk M, Rutyna I, Tyszczuk K. Adsorptive stripping voltammetry of nickel at an in situ plated bismuth film electrode[J]. Electroanalysis, 2010, 22(13): 1494-1498.[19] Hocevar S B, S?vancara I, Ogorevc B, et al. Antimony film electrode for electrochemical stripping analysis[J]. Analytical Chemistry, 2007, 79(22): 8639-8643.[20] Wang J, Lu J, Hocevar S B, et al. Bismuth-coated carbon electrodes for anodic stripping voltammetry[J]. Analytical Chemistry, 2000, 72(14): 3218-3222.[21] Wang J, Tian B. Mercury-free disposable lead sensors based on potentiometric stripping analysis of gold-coated screen-printed electrodes[J]. Analytical Chemistry, 1993, 65(11): 1529-1532.[22] Mikkelsen E, Schrder K H. An oscillating and renewing silver electrode for cadmium and lead detection in differential pulse stripping voltammetry[J]. Electroanalysis, 2001, 13(8/9): 687-692[23] Nolan M A, Kounaves S P. Microfabricated array of iridium microdisks as a substrate for direct determination of Cu2+ or Hg2+ using square-wave anodic stripping voltammetry[J]. Analytical Chemistry, 1999, 71(16): 3567-3573[24] Tesarova E S, Baldrianova L, Stoces M, et al. Antimony powder-modified carbon paste electrodes for electrochemical stripping determination of trace heavy metals[J]. Electrochimica Acta, 2011, 56(19): 6673-6677.[25] Toghill K E, Lei X, Gregory G, et al. Electroanalytical determination of cadmium(II) and Lead(II) using an antimony nanoparticle modified boron-doped diamond electrode[J]. Electroanalysis, 2009, 21(10): 1113-1118.[26] Wang J, Kawde A N, Sahlin E. renewable pencil electrodes for highly sensitive stripping potentiometric measurements of DNA and RNA[J]. Analyst, 2000, 125(1): 5-7.[27] Kakizaki T, Hasebe K, Fresenius J. Potentiometric stripping determination of heavy metals using a graphite-reinforcement carbon vibrating electrode[J]. Analytical Chemistry, 1998, 360(2): 175-178.[28] Bond A M, Mahon P J, Schiewe J, et al. An inexpensive and renewable pencil electrode for use in field-based stripping voltammetry[J]. Analytica Chimica Acta, 1997, 345(1/3): 67-74.[29] Demetriades D, Economou A, Voulgaropoulos A. A study of pencil-lead bismuth-film electrodes for the determination of trace metals by anodic stripping voltammetry[J]. Analytica Chimica Acta, 2004, 519(2): 167-172.[30] Wu S H, Sun J J, Lin Z B, et al. Adsorptive stripping analysis of riboflavin at electrically heated graphite cylindrical electrodes[J]. Electroanalysis, 2007, 19(21): 2251-2257.[31] Tesarova E, Baldrianova L, Hocevar S B, et al. Anodic stripping voltammetric measurement of trace heavy metals at antimony film carbon paste electrode[J]. Analytica Chimica Acta, 2009, 54(5): 1506-1510.[32] Wang J, Lu J M, Hocevar S B, et al. Bismuth-coated carbon electrodes for anodic stripping voltammetry[J]. Analytical Chemistry, 2000, 72(14): 3218-3222.[33] Wei Y, Gao C, Meng F L, et al. SnO2/reduced graphene oxide nanocomposite for the simultaneous electrochemical detection of cadmium(II), lead(II), copper(II), and mercury(II): An interesting favorable mutual interference[J]. Journal of Physical Chemistry C, 2012, 116(1): 1034-1041. |