[1] Haruta M, Yamada N, Kobayashi T, et al. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide[J]. Journal of Catalysis, 1989, 115(2): 301-309.[2] Sau T K, Murphy C J. Room temperature, high-yield synthesis of multiple shapes of gold[J]. Journal of the American Chemical Society, 2004, 126(28): 8648-8649.[3] Wang Z J, Yuan J H, Zhou M, et al. Synthesis, characterization and mechanism of cetyltrimethylammonium bromide bilayer-encapsulated gold nanosheets and nanocrystals[J]. Applied Surface Science, 2008, 254(20): 6289-6293.[4] Zhang J, Langille M R, Personick M L, et al. Concave cubic gold nanocrystals with high-index facet[J]. Journal of the American Chemical Society, 2010, 132(40): 14012-14014.[5] Lu D L, Tanaka K I. Au, Cu, Ag, Ni, and Pd particles grown in solution at different electrode potentials[J]. Journal of Physical Chemistry B, 1997, 101(20): 4030-4034.[6] Jana N R, Gearheart L, Murphy C J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods[J]. Journal of Physical Chemistry B, 2001, 105(19): 4065-4067.[7] Garg N, Scholl C, Mohanty A, et al. The role of bromide ions in seeding growth of Au nanorods[J]. Langmuir, 2010, 26(12): 10271-10276.[8] Vivek J P, Burgess I J. Quaternary ammonium bromide surfactant adsorption on low-index surfaces of gold. 1. Au(111)[J]. Langmuir, 2012, 28(11): 5031-5039.[9] Brosseau C L, Sheepwash E, Burgess I J, et al. Adsorption of N-decyl-N,N,N-trimethylammonium triflate (DeTATf), a cationic surfactant, on the Au(111) electrode surface[J]. Langmuir, 2007, 23(4): 1784-1791.[10] Clavilier J, Faure R, Guinet G, et al. Preparation of mono-crystalline Pt microelectrodes and electrochemical study of the plane surfaces cut in the direction of the (111) and (110) planes[J]. Journal of Electroanalytical Chemistry, 1980, 107(1): 205-209.[11] Harten U, Lahee A M, Toennies J P. Observation of a soliton reconstruction of Au(111) by high-resolution helium-atom diffraction[J]. Physical Review Letters, 1985, 54(24): 2619.[12] Barth J V, Brune H, Ertl G. Scanning tunneling microscopy observations on the reconstructed Au(111) surface: Atomic structure, long-range superstructure, rotational domains, and surface defects[J]. Physical Review B, 1990, 42(15): 9307-9317.[13] Ocko B M, Magnussen O M, Wang J X, et al. The structure and phase behavior of electrodeposited halides on single-crystal metal surfaces[J]. Physica B, 1996, 221(1-4): 238-244.[14] Magnussen O M. Ordered anion adlayers on metal electrode surfaces[J]. Chemical Reviews, 2002, 102(3): 679-725.[15] Shi Z C, Lipkowski J, Mirwald S T, et al. Electrochemical and second harmonic generation study of bromide adsorption at the Au(111) electrode surface[J]. Journal of the Chemical Society, Faraday Transactions, 1996, 92(20): 3737-3746.[16] Tao N J, Lindsay S M. Kinetics of a potential induced 23 × to 1 × 1 transition of Au(111) studied by in situ scanning tunneling microscopy[J]. Surface Science Letters, 1992, 274(2): 546-553.[17] Wang J, Davenport A J, et al. Surface charge-induced ordering of the Au(111) surface[J]. Science, 1992, 255(5050): 1416-1418.[18] Kolb D M. Reconstruction phenomena at metal-electrolyte interfaces[J]. Progress in Surface Science, 1996, 51(2): 109-173.[19] Gao X P, Hamelin A, Weaverb M J. Atomic relaxation at ordered electrode surfaces probed by scanning tunneling microscopy: Au(111) in aqueous solution compared with ultrahigh-vacuum environments[J]. Journal of Chemical Physics, 1991, 95(9): 6993-6996. [20] Kawasaki H, Nishimura K, Arakawa R. Influence of the counterions of cetyltrimetylammonium salts on the surfactant adsorption onto gold surfaces and the formation of gold nanoparticles[J]. Journal of Physical Chemistry C, 2007, 111(6): 2683-2690. |