电化学(中英文) ›› 2014, Vol. 20 ›› Issue (3): 219-233. doi: 10.13208/j.electrochem.130884
• 基础电化学近期研究专辑(武汉大学 陈胜利教授主编) • 上一篇 下一篇
朱成周1,2,韩磊1,2,董绍俊1,2*
收稿日期:
2013-08-27
修回日期:
2013-11-01
出版日期:
2014-06-28
发布日期:
2013-11-06
通讯作者:
董绍俊
E-mail:dongsj@ciac.jl.cn
基金资助:
This work was supported by the National Natural Science Foundation of China (No. 21075116) and 973 Project (Nos. 2011CB911002 and 2010CB933603)
ZHU Cheng-zhou1,2, HAN Lei1,2, DONG Shao-jun1,2*
Received:
2013-08-27
Revised:
2013-11-01
Published:
2014-06-28
Online:
2013-11-06
Contact:
DONG Shao-jun
E-mail:dongsj@ciac.jl.cn
Supported by:
This work was supported by the National Natural Science Foundation of China (No. 21075116) and 973 Project (Nos. 2011CB911002 and 2010CB933603)
摘要: 由于独特的光、电、磁以及催化性质,功能性纳米材料的研究已经渗透到各个学科并在不同领域展示出潜在的应用前景,尤其是利用纳米材料构建功能性电极界面、研究其电化学行为并发展新颖的电化学纳米器件引起了了人们的广泛关注. 本篇综述中,主要介绍作者研究小组在以功能性纳米材料构建新颖的电化学界面的最新进展,集中关注其在电化学传感器、燃料电池以及光谱电化学中的应用. 这些纳米材料的应用极大地增强了电子转移、提高了电化学传感器的灵敏度以及燃料电池的催化效率. 作者也通过合成一些光谱匹配的荧光以及电致变色纳米材料构建新颖的荧光光谱电化学器件,同时在材料的合成组装、多重刺激响应体系以及多功能化进行探索. 最后,作者对这类基于纳米材料的电化学器件的发展和应用予以展望.
中图分类号:
朱成周,韩磊,董绍俊*. 基于功能性纳米材料的新型电化学界面的构筑以及相关应用(英文)[J]. 电化学(中英文), 2014, 20(3): 219-233.
ZHU Cheng-zhou, HAN Lei, DONG Shao-jun*. Novel Electrochemical Interfaces Based on Functional Nanomaterials and Their Related Applications[J]. Journal of Electrochemistry, 2014, 20(3): 219-233.
[1] Xia Y N, Xiong Y J, Lim B, et al. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics?[J]. Angewandte Chemie International Edition, 2009, 48(1): 60-103.[2] Guo S J, Wang E K. Noble metal nanomaterials: Controllable synthesis and application in fuel cells and analytical sensors[J]. Nano Today, 2011, 6(3): 240-264.[3] Guo S J, Dong S J. Graphene nanosheet: Synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications[J]. Chemical Society Reviews, 2011, 40(5): 2644-2672.[4] Han L, Bai L, Zhu C Z, et al. Improving the performance of a membraneless and mediatorless glucose-air biofuel cell with a TiO2 nanotube photoanode[J]. Chemical Communications, 2012, 48(49): 6103-6105.[5] Wen D, Xu X L, Dong S J. A single-walled carbon nanohorn-based miniature glucose/air biofuel cell for harvesting energy from soft drinks[J]. Energy & Environmental Science, 2011, 4(4): 1358-1363.[6] Zhu C Z, Guo S Z, Wang P, et al. One-pot, water-phase approach to high-quality graphene/TiO2 composite nanosheets[J]. Chemical Communications, 2010, 46(38): 7148-7150.[7] Zhu C Z, Zhai J F, Wen D, et al. Graphene oxide/polypyrrole nanocomposites: One-step electrochemical doping, coating and synergistic effect for energy storage[J]. Journal of Materials Chemistry, 2012, 22(13): 6300-6306.[8] Wen D, Guo S J, Dong S J, et al. Ultrathin Pd nanowire as a highly active electrode material for sensitive and selective detection of ascorbic acid[J]. Biosensors & Bioelectronics, 2010, 26(3): 1056-1061.[9] Wang L, Zhu C Z, Han L, et al. Label-free, regenerative and sensitive surface plasmon resonance and electrochemical aptasensors based on graphene[J]. Chemical Communications, 2011, 47(27): 7794-7796.[10] Li B L, Du Y, Wei H, et al. Reusable, label-free electrochemical aptasensor for sensitive detection of small molecules[J]. Chemical Communications, 2007, (36): 3780-3782.[11] Zhu C Z, Fang Y X, Wen D, et al. One-pot synthesis of functional two-dimensional graphene/SnO2 composite nanosheets as a building block for self-assembly and an enhancing nanomaterial for biosensing[J]. Journal of Materials Chemistry, 2011, 21(42): 16911-16917.[12] Lei J P, Ju H X. Signal amplification using functional nanomaterials for biosensing[J]. Chemical Society Reviews, 2012, 41(6): 2122-2134.[13] Guo S J, Dong S J. Biomolecule-nanoparticle hybrids for electrochemical biosensors[J]. Trac-Trends in Analytical Chemistry, 2009, 28(1): 96-109.[14] Zhou M, Dong S J. Bioelectrochemical interface engineering: Toward the fabrication of electrochemical biosensors, biofuel cells, and self-powered logic biosensors[J]. Accounts of Chemical Research, 2011, 44(11): 1232-1243.[15] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.[16] Chen D, Tang L H, Li J H. Graphene-based materials in electrochemistry[J]. Chemical Society Reviews, 2010, 39(8): 3157-3180.[17] Zhu C Z, Dong S J. Energetic graphene-based electrochemical analytical devices in nucleic acid, protein and cancer diagnostics and detection[J]. Electroanalysis, 2014, 26(1): 14-29.[18] Guo S J, Dong S J. Graphene and its derivative-based sensing materials for analytical devices[J]. Journal of Materials Chemistry, 2011, 21(46): 18503-18516.[19] Zhou M, Zhai Y M, Dong S J. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide[J]. Analytical Chemistry, 2009, 81(14): 5603-5613.[20] Zhu C Z, Guo S J, Fang Y X, et al. Reducing sugar: New functional molecules for the green synthesis of graphene nanosheets[J]. ACS Nano, 2010, 4(4): 2429-2437.[21] Kuila T, Bose S, Khanra P, et al. Recent advances in graphene-based biosensors[J]. Biosensors & Bioelectronics, 2011, 26(12): 4637-4648.[22] Fang Y X, Wang E K. Electrochemical biosensors on platforms of graphene[J]. Chemical Communications, 2013, 49(83): 9526-9539.[23] Guo Y J, Li J, Dong S J. Hemin functionalized graphene nanosheets-based dual biosensor platforms for hydrogen peroxide and glucose[J]. Sensors and Actuators B-Chemical, 2011, 160(1): 295-300.[24] Guo Y J, Guo S J, Li J, et al. Cyclodextrin-graphene hybrid nanosheets as enhanced sensing platform for ultrasensitive determination of carbendazim[J]. Talanta, 2011, 84(1): 60-64.[25] Guo Y J, Guo S J, Ren J T, et al. Cyclodextrin functionalized graphene nanosheets with high supramolecular recognition capability: Synthesis and host-guest inclusion for enhanced electrochemical performance[J]. ACS Nano, 2010, 4(7): 4001-4010.[26] Zhu C Z, Guo S J, Zhai Y M, et al. Layer-by-layer self-assembly for constructing a graphene/platinum nanoparticle three-dimensional hybrid nanostructure using ionic liquid as a linker[J]. Langmuir, 2010, 26(10): 7614-7618.[27] Guo S J, Wen D, Zhai Y M, et al. Ionic liquid-graphene hybrid nanosheets as an enhanced material for electrochemical determination of trinitrotoluene[J]. Biosensors & Bioelectronics, 2011, 26(8): 3475-3481.[28] Russell J, Kral P. Configuration-sensitive molecular sensing on doped graphene sheets[J]. Nano Research, 2010, 3(7): 472-480.[29] Shao Y Y, Zhang S, Engelhard M H, et al. Nitrogen-doped graphene and its electrochemical applications[J]. Journal of Materials Chemistry, 2010, 20(35): 7491-7496.[30] Wang Y, Shao Y Y, Matson D W, et al. Nitrogen-doped graphene and its application in electrochemical biosensing[J]. Acs Nano, 2010, 4(4): 1790-1798.[31] Wu P, Cai Z W, Gao Y, et al. Enhancing the electrochemical reduction of hydrogen peroxide based on nitrogen-doped graphene for measurement of its releasing process from living cells[J]. Chemical Communications, 2011, 47(40): 11327-11329.[32] Fang Y X, Guo S J, Zhu C Z, et al. Self-assembly of cationic polyelectrolyte-functionalized graphene nanosheets and gold nanoparticles: A two-dimensional heterostructure for hydrogen peroxide sensing[J]. Langmuir, 2010, 26(13): 11277-11282.[33] Du Y, Guo S J, Dong S J, et al. An integrated sensing system for detection of DNA using new parallel-motif DNA triplex system and graphene-mesoporous silica-gold nanoparticle hybrids[J]. Biomaterials, 2011, 32(33): 8584-8592.[34] Du Y, Guo S J, Qin H X, et al. Target-induced conjunction of split aptamer as new chiral selector for oligopeptide on graphene-mesoporous silica-gold nanoparticle hybrids modified sensing platform[J]. Chemical Communications, 2012, 48(6): 799-801.[35] Guo S J, Du Y, Yang X, et al. Solid-state label-free integrated aptasensor based on graphene-mesoporous silica-gold nanoparticle hybrids and silver microspheres[J]. Analytical Chemistry, 2011, 83(20): 8035-8040.[36] Guo S J, Wen D, Zhai Y M, et al. Platinum nanoparticle ensemble-on-graphene hybrid nanosheet: One-pot, rapid synthesis, and used as new electrode material for electrochemical sensing[J]. ACS Nano, 2010, 4(7): 3959-3968.[37] Cao X H, Zeng Z Y, Shi W H, et al. Three-dimensional graphene network composites for detection of hydrogen peroxide[J]. Small, 2013, 9(9/10): 1703-1707.[38] Dong X C, Xu H, Wang X W, et al. 3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection[J]. ACS Nano, 2012, 6(4): 3206-3213.[39] Bai L, Wen D, Yin J Y, et al. Carbon nanotubes-ionic liquid nanocomposites sensing platform for NADH oxidation and oxygen, glucose detection in blood[J]. Talanta, 2012, 91: 110-115.[40] Guo S J, Li J, Ren W, et al. Carbon nanotube/silica coaxial nanocable as a three-dimensional support for loading diverse ultra-high-density metal nanostructures: Facile preparation and use as enhanced materials for electrochemical devices and SERS[J]. Chemistry of Materials. 2009, 21(11): 2247-2257.[41] Zhai J F, Zhai Y M, Wen D, et al. Prussian blue/multiwalled carbon nanotube hybrids: Synthesis, assembly and electrochemical behavior[J]. Electroanalysis, 2009, 21(20): 2207-2212.[42] Guo Y J, Guo S J, Fang Y X, et al. Gold nanoparticle/carbon nanotube hybrids as an enhanced material for sensitive amperometric determination of tryptophan[J]. Electrochimica Acta, 2010, 55(12): 3927-3931.[43] Deng L, Wang Y Z, Shang L, et al. A sensitive NADH and glucose biosensor tuned by visible light based on thionine bridged carbon nanotubes and gold nanoparticles multilayer[J]. Biosensors & Bioelectronics, 2008, 24(4): 951-957.[44] Fang Y X, Guo S J, Zhu C Z, et al. One-dimensional carbon nanotube/SnO2/noble metal nanoparticle hybrid nanostructure: Synthesis, characterization, and electrochemical sensing[J]. Chemistry-An Asian Journal, 2010, 5(8): 1838-1845.[45] Deng L, Chen C G, Zhou M, et al. Integrated self-powered microchip biosensor for endogenous biological cyanide[J]. Analytical Chemistry, 2010, 82(10): 4283-4287.[46] Wen D, Deng L, Guo S J, et al. Self-powered sensor for trace Hg2+ detection[J]. Analytical Chemistry, 2011, 83(10): 3968-3972.[47] Zhang L L, Zhou M, Dong S J. A self-powered acetaldehyde sensor based on biofuel cell[J]. Analytical Chemistry, 2012, 84(23): 10345-10349.[48] Zhou M, Shang L, Li B L, et al. Highly ordered mesoporous carbons as electrode material for the construction of electrochemical dehydrogenase- and oxidase-based biosensors[J]. Biosensors & Bioelectronics, 2008, 24(3): 442-447.[49] Zhou M, Shang L, Li B L, et al. The characteristics of highly ordered mesoporous carbons as electrode material for electrochemical sensing as compared with carbon nanotubes[J]. Electrochemistry Communications, 2008, 10(6): 859-863.[50] Wang Y J, Wilkinson D P, Zhang J J. Noncarbon support materials for polymer electrolyte membrane fuel cell electrocatalysts[J]. Chemical Reviews, 2011, 111(12): 7625-7651.[51] Bianchini C, Shen P K. Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells[J]. Chemical Reviews, 2009, 109(9): 4183-4206.[52] Zhang L, Niu W X, Xu G B. Synthesis and applications of noble metal nanocrystals with high-energy facets[J]. Nano Today, 2012, 7(6): 586-605.[53] Tian N, Zhou Z Y, Sun S G, et al. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity[J]. Science, 2007, 316(5825): 732-735.[54] Lu C L, Prasad K S, Wu H L, et al. Au nanocube-directed fabrication of Au-Pd core-shell nanocrystals with tetrahexahedral, concave octahedral, and octahedral structures and their electrocatalytic activity[J]. Journal of the American Chemical Society, 2010, 132(41): 14546-14553.[55] Zhu C Z, Guo S J, Dong S J. Rapid, general synthesis of PdPt bimetallic alloy nanosponges and their enhanced catalytic performance for ethanol/methanol electrooxidation in an alkaline medium[J]. Chemistry-A European Journal, 2013, 19(3): 1104-1111.[56] Guo S J, Li J, Dong S J, et al. Three-dimensional Pt-on-Au bimetallic dendritic nanoparticle: One-step, high-yield synthesis and its bifunctional plasmonic and catalytic properties[J]. Journal of Physical Chemistry C, 2010, 114(36): 15337-15342.[57] Fang Y X, Guo S J, Zhu C Z, et al. Twenty second synthesis of Pd nanourchins with high electrochemical activity through an electrochemical route[J]. Langmuir, 2010, 26(23): 17816-17820.[58] Guo S J, Dong S J. Metal nanomaterial-based self-assembly: Development, electrochemical sensing and SERS applications[J]. Journal of Materials Chemistry, 2011, 21(42): 16704-16716.[59] Wang L, Yamauchi Y. Block copolymer mediated synthesis of dendritic platinum nanoparticles[J]. Journal of the American Chemical Society, 2009, 131(26): 9152-9153.[60] Zhu C Z, Guo S J, Dong S J. PdM(M = Pt, Au) bimetallic alloy nanowires with enhanced electrocatalytic activity for electro-oxidation of small molecules[J]. Advanced Materials, 2012, 24(17): 2326-2331.[61] Zhu C Z, Guo S J, Dong S J. Facile synthesis of trimetallic AuPtPd alloy nanowires and their catalysis for ethanol electrooxidation[J]. Journal of Materials Chemistry, 2012, 22(30): 14851-14855.[62] Guo S J, Dong S J, Wang E K. Pt/Pd bimetallic nanotubes with petal-like surfaces for enhanced catalytic activity and stability towards ethanol electrooxidation[J]. Energy & Environmental Science, 2010, 3(9): 1307-1310.[63] Guo S J, Dong S J, Wang E. Ultralong Pt-on-Pd bimetallic nanowires with nanoporous surface: Nanodendritic structure for enhanced electrocatalytic activity[J]. Chemical Communications, 2010, 46(11): 1869-1871.[64] Chen X M, Wu G H, Chen J M, et al. Synthesis of “clean” and well-dispersive Pd nanoparticles with excellent electrocatalytic property on graphene oxide[J]. Journal of the American Chemical Society, 2011, 133(11): 3693-3695.[65] Wu B H, Kuang Y J, Zhang X H, et al. Noble metal nanoparticles/carbon nanotubes nanohybrids: Synthesis and applications[J]. Nano Today, 2011, 6(1): 75-90.[66] Kou R R, Shao Y Y, Mei D H, et al. Stabilization of electrocatalytic metal nanoparticles at metal-metal oxide-graphene triple junction points[J]. Journal of the American Chemical Society, 2011, 133(8): 2541-2547.[67] Guo S J, Dong S J, Wang E K. Constructing carbon nanotube/Pt nanoparticle hybrids using an imidazolium-salt-based ionic liquid as a linker[J]. Advanced Materials, 2010, 22(11): 1269-1272.[68] Guo S J, Dong S J, Wang E K. Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: Facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation[J]. ACS Nano, 2010, 4(1): 547-555.[69] Guo S J, Dong S J, Wang E K. Polyaniline/Pt hybrid nanofibers: High-efficiency nanoelectrocatalysts for electrochemical devices[J]. Small, 2009, 5(16): 1869-1876.[70] Zhu C Z, Dong S J. Recent progress in graphene-based nanomaterials as advanced electrocatalysts towards oxygen reduction reaction[J]. Nanoscale, 2013, 5(5): 1753-1767.[71] Guo S J, Zhang S., Sun S H. Tuning nanoparticle catalysis for the oxygen reduction reaction[J]. Angewandte Chemie International Edition, 2013, 52(33): 8526-8544.[72] Zheng Y, Jiao Y, Jaroniec M, et al. Nanostructured metal-free electrochemical catalysts for highly efficient oxygen reduction[J]. Small, 2012, 8(23): 3550-3566.[73] Gong K P, Du F, Xia Z H, et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J]. Science, 2009, 323(5915): 760-764.[74] Yang S B, Zhi L J, Tang K, et al. Efficient synthesis of heteroatom(N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions[J]. Advanced Functional Materials, 2012, 22(17): 3634-3640.[75] Ji H Q, Li M G, Wang Y L, et al. Electrodeposition of graphene-supported PdPt nanoparticles with enhanced electrocatalytic activity[J]. Electrochemistry Communications, 2012, 24: 17-20.[76] Sun C L, Lee H H., Yang J M., et al. The simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid using graphene/size-selected Pt nanocomposites[J]. Biosensors & Bioelectronics, 2011, 26(8): 3450-3455.[77] Kang Y J, Ye X C, Chen J, et al. Design of Pt-Pd binary superlattices exploiting shape effects and synergistic effects for oxygen reduction reactions[J]. Journal of the American Chemical Society, 2013, 135(1): 42-45.[78] Wang C, Chi M F, Li D G, et al. Design and synthesis of bimetallic electrocatalyst with multilayered Pt-skin surfaces[J]. Journal of the American Chemical Society, 2011, 133(36): 14396-14403.[79] Jiang S, Zhu C Z, Dong S J. Cobalt and nitrogen-cofunctionalized graphene as a durable non-precious metal catalyst with enhanced ORR activity[J]. Journal of Materials Chemistry A, 2013, 1(11): 3593-3599.[80] Zhu C Z, Zhai J F, Dong S J. Bifunctional fluorescent carbon nanodots: Green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction[J]. Chemical Communications, 2012, 48(75): 9367-9369.[81] Deng L, Zhou M, Liu C, et al. Development of high performance of Co/Fe/N/CNT nanocatalyst for oxygen reduction in microbial fuel cells[J]. Talanta, 2010, 81(1/2): 444-448.[82] Tomasulo M, Giordani S, Raymo F M. Fluorescence modulation in polymer bilayers containing fluorescent and photochromic dopants[J]. Advanced Functional Materials, 2005, 15(5): 787-794.[83] Qin B, Chen H Y, Liang H, et al. Reversible photoswitchable fluorescence in thin films of inorganic nanoparticle and polyoxometalate assemblies[J]. Journal of the American Chemical Society, 2010, 132(9): 2886-2888.[84] Browne W R, Pollard M M, de Lange B, et al. Reversible three-state switching of luminescence: A new twist to electro- and photochromic behavior[J]. Journal of the American Chemical Society, 2006, 128(38): 12412-12413.[85] Jin L H, Fang Y X, Wen D, et al. Reversibly electroswitched quantum dot luminescence in aqueous solution[J]. Acs Nano, 2011, 5(6): 5249-5253.[86] Kim Y, Kim E, Clavier G, et al. New tetrazine-based fluoroelectrochromic window; modulation of the fluorescence through applied potential[J]. Chemical Communications, 2006, 34: 3612-3614.[87] Wang B, Yin Z D, Bi L H, et al. An electroswitchable fluorescence thin-film based on a luminescent polyoxometalate cluster[J]. Chemical Communication, 2010, 46(38): 7163-7165.[88] Jin L H, Shang L, Zhai J F, et al. Fluorescence spectroelectrochemistry of multilayer film assembled CdTe quantum dots controlled by applied potential in aqueous solution[J]. Journal of Physical Chemistry C, 2010, 114(2): 803-807.[89] Gu H X, Bi L H, Fu Y, et al. Multistate electrically controlled photoluminescence switching[J]. Chemical Science, 2013, 4(12): 4371-4377.[90] Zhai Y L, Jin L H, Zhu C Z, et al. Reversible electroswitchable luminescence in thin films of organic-inorganic hybrid assemblies[J]. Nanoscale, 2012, 4(24): 7676-7681.[91] Jin L H, Fang Y X, Hu P, et al. Polyoxometalate-based inorganic-organic hybrid film structure with reversible electroswitchable fluorescence property[J]. Chemical Communications, 2012, 48(15): 2101-2103.[92] Jin L H, Fang Y X, Shang L, et al. Gold nanocluster-based electrochemically controlled fluorescence switch surface with prussian blue as the electrical signal receptor[J]. Chemical Communications, 2013, 49(3): 243-245.[93] Zhai Y L, Zhu Z J, Zhu C Z, et al. Reversible photo-chem-electrotriggered three-state luminescence switching based on core-shell nanostructures[J]. Nanoscale, 2013, 5(10): 4344-4350.[94] Zhai Y L, Zhu C Z, Ren J T, et al. Multifunctional polyoxometalates-modified upconversion nanoparticles: Integration of electrochromic devices and antioxidants detection[J]. Chemical Communications, 2013, 49(24): 2400-2402.[95] Bai L, Jin L H, Han L, et al. Self-powered fluorescence controlled switch systems based on biofuel cells[J]. Energy & Environmental Science, 2013, 6(10): 3015-3021. |
[1] | 陈浩杰, 唐美华, 陈胜利. 质子交换膜燃料电池阴极催化层疏水性优化[J]. 电化学(中英文), 2023, 29(9): 2207061-. |
[2] | 郑天龙, 欧明玉, 徐松, 毛信表, 王释一, 和庆钢. 一体式可再生燃料电池双功能氧催化剂的研究进展[J]. 电化学(中英文), 2023, 29(7): 2205301-. |
[3] | 韦宗楠, 曹敏纳, 曹荣. 瓜环基金属纳米催化剂的电化学研究进展[J]. 电化学(中英文), 2023, 29(1): 2215008-. |
[4] | 罗大娟, 刘冰倩, 覃蒙颜, 高荣, 苏丽霞, 苏永欢. 基于Au/rGO/FeOOH的新型电化学传感器一步检测亚硝酸盐[J]. 电化学(中英文), 2022, 28(8): 2110191-. |
[5] | 黄龙, 徐海超, 荆碧, 李秋霞, 易伟, 孙世刚. 质子交换膜燃料电池铂基催化剂研究进展[J]. 电化学(中英文), 2022, 28(1): 2108061-. |
[6] | 王睿卿, 隋升. PEMFC阴极催化层结构分析[J]. 电化学(中英文), 2021, 27(6): 595-604. |
[7] | 朱从懿, 李笑晖, 甘全全. 乙二醇基冷却液污染对质子交换膜燃料电池电堆的影响及恢复措施[J]. 电化学(中英文), 2021, 27(6): 698-704. |
[8] | 魏荣强, 李世安, 刘艺辉, 杨治, 沈秋婉, 杨国刚. 流道与肋宽比对气体扩散层性能影响的数值研究[J]. 电化学(中英文), 2021, 27(5): 579-585. |
[9] | 吴志鹏, 钟传建. 钯基氧还原和乙醇氧化反应电催化剂:关于结构和机理研究的一些近期见解[J]. 电化学(中英文), 2021, 27(2): 144-156. |
[10] | 庄志华, 陈卫. 原子数精确的金属纳米团簇在电催化领域的应用研究进展[J]. 电化学(中英文), 2021, 27(2): 125-143. |
[11] | 胡守训, 李亮, 杨俊豪, 李刘强, 靳志豪. 金属钯插层类水滑石的制备及其电催化乙醇的性能研究[J]. 电化学(中英文), 2021, 27(1): 100-107. |
[12] | 邢逸飞, 李娜, 温晓芳, 韩宏彦, 崔敏, 张聪, 任聚杰, 籍雪平. 基于取代型多酸复合材料的多巴胺电化学检测[J]. 电化学(中英文), 2020, 26(6): 890-899. |
[13] | 俞成荣, 朱建国, 蒋聪盈, 谷宇晨, 周晔欣, 李卓斌, 邬荣敏, 仲政, 官万兵. 基于电-化-热耦合理论对称双阴极固体氧化物燃料电池堆的电流与温度场数值模拟[J]. 电化学(中英文), 2020, 26(6): 789-796. |
[14] | 马武威, 常启刚, 史雄芳, 童延斌, 周立, 叶邦策, 鲁建江, 赵金虎. 基于纳米孔金与离子印迹聚合物结合的新型电化学传感器用于测定砷离子(III)[J]. 电化学(中英文), 2020, 26(6): 900-910. |
[15] | 王佳, 黄秋安, 李伟恒, 王娟, 庄全超, 张久俊. 电化学阻抗谱弛豫时间分布基础[J]. 电化学(中英文), 2020, 26(5): 607-627. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||