[1] Steele B C H, Heinzel A. Materials for fuel-cell technologies[J]. Nature, 2001, 414(6861): 345-352.[2] Borup R, Meyers J, Pivovar B, et al. Scientific aspects of polymer electrolyte fuel cell durability and degradation[J]. Chemical Reviews, 2007, 107(10): 3904-3951.[3] Pan J, Chen C, Zhuang L, et al. Designing advanced alkaline polymer electrolytes for fuel cell applications[J]. Accounts of Chemical Research, 2012, 45(3): 473-481.[4] Pan J, Chen C, Zhuang L, et al. Structure-performance relationship study of alkaline polymer electrolytes[J]. ECS Transactions, 2011, 41(1): 69-72.[5] Tang D P, Pan J, Lu S F, et al. Alkaline polymer electrolyte fuel cells: Principle, challenges, and recent progress[J]. Science China Chemistry, 2010, 53(2): 357-364.[6] Lu S F, Pan J, Huang A B, et al. Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts[J]. Proceedings of the National Academy of Sciences USA, 2008, 105(52): 20611-20614.[7] Varcoe J R, Slade R C T. Prospects for alkaline anion-exchange membrane in low temperature fuel cells[J]. Fuel cells, 2005, 5(2): 187-200.[8] Merle G, Wessling M, Nijmeijer K. Anion exchange membranes for alkaline fuel cells: A review[J]. Journal of Membrane Science, 2011, 377(1/2): 1-35.[9] Wang Y, Li L, Hu L, et al. A feasibility analysis for alkaline membrane direct methanol fuel cell: Thermodynamic disadvantages versus kinetic advantages[J]. Electrochemistry Communications, 2003, 5(8): 662-666.[10] Pan J, Lu S F, Li Y, et al. High-performance alkaline polymer electrolyte for fuel cell applications[J]. Advanced Functional Materials, 2010, 20(2): 312-319.[11] Pan J, Li Y, Zhuang L, et al. Self-crosslinked alkaline polymer electrolyte exceptionally stable at 90 oC[J]. Chemical Communications, 2010, 46(45): 8597-8599.[12] Pan J, Tan L S, Zhuang L, et al. A study of the preparation and performance of self-crosslinking alkaline polymer electrolytes workable at 90 °C[J]. Science China Chemistry, 2011, 41(12): 1848-1856. |