[1] Hideyuki Hosokawa, Makoto Nagase. Investigation of cobalt deposition behavior with zinc injection on stainless steel under BWR conditions[J]. Nuclear Science and Technology, 2004, 41(6):682-689.[2] EPRI TR-104606, Dec. 1994.[3] T. L. Sudensh, L. Wijesinghe, Daniel John Blackwood. Photocurent and capacitance investigations into the nature of the passive films on austenitic stainless steel[J]. Corrosion Science, 2008, 50(1):23-34.[4] Jan Macák, Petr Sajdl, Pavel Ku?era, et al. In situ electro-chemical impedance and noise measurements of corroding stainless steel in high temperature water[J]. Electrochimica Acta 2006, 51: (17) 3566-3577.[5] M. F. Montemor, M. G. S. Ferreira, N. E. Hakiki, et al. Chemical composition and electronics structure of the oxide films formed on 316L stainless steel and nickel based alloys in high temperature aqueous environments[J]. Corrosion Science, 2000, 42(9):1635-1650. [6] S. E. Ziemniak, M. Hanson. Zinc treatment effects on corrosion behavior of 304 stainless steel in high temperature, hydrogenated water[J]. Corrosion Science, 2006, 48(9):2525-2546.[7] S. E. Ziemniak, M. Hanson. Zinc treatment effects on corrosion behavior of alloy 600 in high temperature, hydrogenated water [J]. Corrosion Science, 2006, 48(10):3330-3348.[8] M. Haginuma, S. Ono, M. Sambongi, et al. Effect of metal ion addition on cobalt accumulation reduction and its thermodynamic evaluation, 1998 JAIF Int. Conf. on Water Chemistry in Nuclear Power Plants, Kashiwazaki, Japan:122.[9] C. M. Rangel, T. M. Silva, M. da Cunha Belo. Semiconductor electrochemistry approach to passivity and stress corrosion cracking susceptibility of stainless steels[J]. Electrochimica Acta, 2005,50(25-26):5076-5082.[10] Y. F. Cheng, J. L. Luo. Electronic structure and pitting susceptibility of passive film on carbon steel[J]. Electrochimica Acta, 1999,44(17):2947-2957.[11] P. Schmuki, H. Böhni. Metastable pitting and semiconductive properties of passive films[J]. Electrochemical Society, 139(7):1908-1913.[12] L. Hamadou, A. Kadri, N. Benbrahim, et al. Characterization of thin anodically grown oxide films on AISI 304L stainless steel[J]. Electrochemical Society, 2007, 154(12):291-297.[13] Dawn E. Janney, Douglas L. Porter. Characterization of phases in ‘crud’ from boiling-water reactors by transmission electron microscopy[J]. Nuclear Materials, 2007, 362(1):104-115.[14] Y. J. Kim. Transformation kinetics of oxide formed on noble metal treated 304SS in 288 water, Corrosion 2001(2001), Paper No. 01136.[15] S. E. Ziemniak, M. Hanson. Corrosion behavior of 304 stainless steel in high temperature, hydrogenated water[J]. Corrosion Science, 2002, 44(10): 2209-2230.[16] S. E. Ziemniak, M. Hanson. Corrosion behavior of NiCrFe alloy 600 in high temperature, hydrogenated water[J]. Corrosion Science, 2006, 48(2):498-521.[17] A. Di Paola. Semiconducting properties of passive films on stainless steels[J]. Electrochimica Acta 1989, 34(2):203-210. [18] W. Li, J. Luo. Electric properties and pitting susceptibility of passive films formed on iron in chromate solution[J]. Electrochemistry Communication, 1999, 1(8):349-353.[19] Paola A. P., Shukla D., Stimming U. Photoelectrochemical study of passive films on stainless steel in neutral solutions[J]. Electrochimica. Acta, 1991,36(2):345-352.[20] Sunseri C., Piazza S., Di Quarto, F. Photocurrent spectroscopic investigations of passive films on chromium[J]. Electrochemical Society, 1990,137(8):2411-2417.[21] Macdonald, D. D. The point defect model for the passive state [J]. Electrochemical Society, 1992, 139(12):3434-3449. |