[1] O’Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films [J]. Nature, 1991, 353: 737-740.[2] Nazeeruddin M K, Péchy P, Renouard T, et al. Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells [J]. J Am Chem Soc, 2001, 123 (8): 1613-1624.[3] Chiba Y, Islam A, Watanabe Y, et al. Dye-sensitized solar cells with conversion efficiency of 11.1% [J]. Jpn J Appl Phys, 2006, 45 (25): 638-640.[4] Grätzel M. Photoelectrochemical cells [J]. Nature, 2001, 414: 338-344.[5] Dai S Y, Weng J, Sui Y F, et al. Dye-sensitized solar cells, from cell to module [J]. Solar Energy Materials and Solar Cells, 2004, 84(1-4): 125-133.[6] Robertson N. Optimizing dyes for dye-sensitized solar cells [J]. Angew Chem Int Ed, 2006, 45 (15): 2338-2345.[7] Tian H, Meng F. Solar cells based on cyanine and polymethine dyes. Opt Sci Eng, 2005, 99(4): 313-329.[8] Grätzel M. The advent of mesoscopic injection solar cells [J]. Prog Photovoltaics: 2006, 14 (5): 429-442.[9] Bach U, Lupo D, Comte P, et al. Solid state dye sensitized cell showing high photon to current conversion efficiencies [J]. Nature, 1998, 395: 583-585.[10] Gledhill S E, Scott B, Gregg B A. Organic and nano-structured composite photovoltaics: An overview [J]. J Mater Res, 2005, 20 (12): 3167-3179.[11] Gorlov M, Kloo L. Ionic liquid electrolytes for dye-sensitized solar cells [J]. Dalton Trans, 2008, 20: 2655-2666.[12] Chervakov O V, Burmistr M V, Sverdlikovs’ka O S, et al. Ionic liquids for promising ion-conducting polymer materials of electrochemical devices [J]. Polimernii Zhurnal, 2008, 30 (1): 5-13.[13] Lenzmann F, Krueger J, Burnside S, et al. Surface Photovoltage Spectroscopy of Dye-Sensitized Solar Cells with TiO2, Nb2O5 and SrTiO3 Nanocrystalline Photoanodes: Indication for Electron Injection from Higher Excited Dye States [J]. J Phys Chem B, 2001, 105 (27): 6347-6352.[14] Morrison S R. Electrochemistry at Semiconductor and Oxidized Metal Electrodes [M]. New York: Plenum Press, 1980.[15] Finklea H O. Semiconductor Electrodes [M]. Amsterdam: Elsevier, 1988.[16] Huang S Y, Schlichthörl G, Nozik A J, et al. Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells [J]. J Phys Chem B, 1997, 101 (14): 2576-2582.[17] Wang P, Zakeeruddin S M, Exnar I, et al. High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte [J]. Chem Commun, 2002, (24): 2972-2973.[18] Kohle O, Grätzel M, Meyer A F, et al. The photovoltaic stability of bis(isothocyanato) ruthenium(II)-bis-2,2’-bipyridine-4,4’-dicarboxylic acid and related sensitizers [J]. Adv Mater, 1997, 9 (11): 904-906.[19] Kelly C A, Farzad F, Thompson D W, et al. Cation-controlled interfacial charge injection in sensitized nanocrystalline TiO2 [J]. Langmuir, 1999, 15 (20): 7047-7054.[20] Schlichthorl G, Huang S Y, Sprague J, et al. Band edge movement and recombination kinetics in dye-sensitized nanocrystalline TiO2 solar cells: a study by intensity modulated photovoltage spectroscopy [J]. J Phys Chem B, 1997, 101 (41): 8141-8155.[21] Liu C, Bard A. A charge-induced absorption-edge shift in cadmium sulfide semiconductor films [J]. J Phys Chem, 1989, 93 (23): 7749-7750.[22] Redmond G, Fitzmaurice D. Spectroscopic determination of flatband potentials for polycrystalline titania electrodes in nonaqueous solvents [J]. J Phys Chem, 1993, 97 (3): 1426-1430.[23] Wang H, He J, Boschloo G, et al. Electrochemical investigation of traps in a nanostructured TiO2 Film [J]. J Phys Chem B, 2001, 105 (13): 2529-2533.[24] Redmond G, Grätzel M, Fitzmaurice D. Effect of surface chelation on the energy of an intraband surface state of a nanocrystalline titania film [J]. J Phys Chem, 1993, 97 (27): 6951-6954.[25] Enright B, Redmond G, Fitzmaurice D. Spectroscopic determination of flatband potentials for polycrystalline TiO2 electrodes in mixed solvent systems [J]. J Phys Chem, 1994, 98 (24): 6195-6200.[26] Yang S M, Kou H Z, Wang H J, et al. Preparation and band energetics of transparent nanostructured SrTiO3 film electrodes [J]. J Phys Chem C, 2010, 114 (2): 815-819.[27] Yang S M, Kou H Z, Wang J C. Tunability of the Band Energetics of Nanostructured SrTiO3 Electrodes for Dye-Sensitized Solar Cells [J]. J Phys Chem C, 2010, 114 (9): 4245-4249.[28] Nazeeruddin M K, Kay A, Grätzel M. Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes [J]. J Am. Chem Soc, 1993, 115 (14): 6382-6390.[29] Ito S, Murakami T N, Comte P, et al. Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10% [J]. Thin Solid Films, 2008, 516 (14): 4613-4619.[30] Yang S M, Kou H Z, Wang H J, et al. The photoelectrochemical properties of N3 sensitized CaTiO3 modified TiO2 nanocrystalline electrodes [J]. Electrochimica Acta, 2009, 55 (1): 305-310.[31] Yang S M, Kou H Z, Wang H J, et al. The enhanced photoelectric conversion efficiency of N3 sensitized MgTiO3 modified nanoporous TiO2 electrodes [J]. Colloids Surf A, 2009, 340 (1-3):182-186.[32] Katoh R, Furube A, Kasuya M, et al. Photoinduced electron injection in black-dye-sensitized nanocrystalline TiO2 films [J]. J Mater Chem, 2007, 17 (30): 3190-3196.[33] Ooi K, Miyai Y, Sakakihara J. Mechanism of lithium(1+) insertion in spinel-type manganese oxide. Redox and ion-exchange reactions [J]. Lmgmuir, 1991, 7 (6): 1167-1171.[34] O’Regan B, Moser J, Anderson M, et al. Vectorial electron injection into transparent semiconductor membranes and electric field effects on the dynamics of light-induced charge separation [J]. J Phys Chem, 1990, 94 (24): 8720-8726.[35] Yum J H, Nakade S, Kim D Y, et al. Improved performance in dye-sensitized solar cells employing TiO2 photoelectrodes coated with metal hydroxides [J]. J Phys Chem B, 2006, 110 (7): 3215-3219.[36] Niinobe D, Makari Y, Kitamura T, et al. Origin of enhancement in open-circuit voltage by adding ZnO to nanocrystalline SnO2 in dye-sensitized solar cells [J]. J Phys Chem B, 2005, 109 (38): 17892-17900.[37] Rosenbluth M L, Lewis N S. ‘Ideal’ behavior of the open circuit voltage of semiconductor/liquid junctions [J]. J. Phys. Chem, 1989, 93 (9): 3735-3740. |