[1] Nie Y X(聂玉昕). 《中国大百科全书》74卷(第二版)物理学 词条:能量[M]. Encyclopedia of China Publishing House(中国大百科全书出版社), 2009-07: 352-353. [2] Subhash C, Singhal K K. Han M F(韩敏芳), Jiang X F(蒋先锋)译. 高温固体氧化物燃料电池—原理、设计和应用[M]. Science Press(科学出版社), 2007. [3] Zhong K, Zhang B, Luo S, et al. Investigation on porous MnO microsphere anode for lithium, ion batteries[J]. Journal of Power Sources, 2011, 196(16): 6802-6808. [4] Lyu Y, Zhao N, Hu E, et al. Probing reversible multi-electron transfer and structure evolution of Li1.2Cr0.4Mn0.4O2 cathode material for Li-ion batteries in a voltage range of 1.0-4.8 V[J]. Chemistry of Materials, 2015, 27(15): 5238-5252. [5] Zu C X, Li H. Thermodynamic analysis on energy densities of batteries[J]. Energy & Environmental Science, 2011, 4(8): 2614-2624. [6] Cui Z, Guo X, Li H. Improved electrochemical properties of MnO thin film anodes by elevated deposition temperatures: Study of conversion reactions[J]. Electrochimica Acta, 2013, 89: 229-238. [7] Delmer O, Balaya P, Kienle L, et al. Enhanced potential of amorphous electrode materials: Case study of RuO2[J]. Advanced Materials, 2008, 20(3): 501-505. [8] Wu X Y, Jin S F, Zhang Z Z, et al. Unravelling the storage mechanism in organic carbonyl electrodes for sodium-ion batteries[J]. Science Advances, 2015, 1(8): e1500330. [9] Zheng H(郑浩), Gao J(高健), Wang S F(王少飞), et al. Fundamental scientific aspects of lithium batteries (VI)-Ionic transport in solids[J]. Energy Storage Science and Technology(储能科学与技术), 2013, 2(6): 620-635. [10] Cui Z H, Guo X X, Li H. Equilibrium voltage and overpotential variation of nonaqueous Li-O2 batteries using the galvanostatic intermittent titration technique[J]. Energy & Environmental Science, 2015, 8(1): 182-187. [11] Mueller-Neuhaus J R, Dunlap R A, Dahn J R. Understanding irreversible capacity in LixNi1-yFeyO2 cathode materials[J]. Journal of The Electrochemical Society, 2000, 147(10): 3598-3605. [12] Johnson C S, Kim J-S, Jeremy Kropf A, et al. The role of Li2MO2 structures (M = metal ion) in the electrochemistry of xLiMn0.5Ni0.5O2?(1-x)Li2TiO3 electrodes for lithium-ion batteries[J]. Electrochemistry Communications, 2002, 4(6): 492-498. [13] Wu X Y, Ma J, Ma Q D, et al. A spray drying approach for the synthesis of a Na2C6H2O4/CNT nanocomposite anode for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(25): 13193-13197. [14] Chen Z, Chen Q, Chen L, et al. Electrochemical behavior of nanostructured ε-VOPO4 over two redox plateaus[J]. Journal of The Electrochemical Society, 2013, 160(10): A1777-A1780. [15] Hu Y S, Kienle L, Guo Y G, et al. High lithium electroactivity of nanometer-sized rutile TiO2[J]. Advanced Materials, 2006, 18(11): 1421-1426. [16] Yu X, Pan H, Wan W, et al. A size-dependent sodium storage mechanism in Li4Ti5O12 investigated by a novel characterization technique combining in situ X-ray diffraction and chemical sodiation[J]. Nano Letters, 2013, 13(10): 4721-4727. [17] Wu N, Lyu Y C, Xiao R J, et al. A highly reversible, low-strain Mg-ion insertion anode material for rechargeable Mg-ion batteries[J]. NPG Asia Materials, 2014, 6: e120. [18] Wu N, Yang Z Z, Yao H R, et al. Improving the electrochemical performance of the Li4Ti5O12 electrode in a rechargeable magnesium battery by lithium-magnesium Co-intercalation[J]. Angewandte Chemie International Edition, 2015, 54(19): 5757-5761. [19] Liu N, Li H, Wang Z, et al. Origin of solid electrolyte interphase on nanosized LiCoO2[J]. Electrochemical and Solid-State Letters, 2006, 9(7): A328-A331. [20] Wang Z, Chen L. Solvent storage-induced structural degradation of LiCoO2 for lithium ion batteries[J]. Journal of Power Sources, 2005, 146(1/2): 254-258. [21] Goodenough J B, Kim Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3): 587-603. [22] LI H(李泓). Fundamental scientific aspects of lithium ion batteries (XV) - Summary and outlook[J]. Energy Storage Science and Technology(储能科学与技术), 2015, 4(3): 306-318. [23] Li W J(李文俊), Chu G(褚赓), LI H(李泓), et al. Fundamental scientific aspects of lithium batteries (XII) - Characterization techniques[J]. Energy Storage Science and Technology(储能科学与技术), 2014, 3(6): 642-667. [24] Ma C(马璨), Lyu Y C(吕迎春), LI H(李泓). Fundamental scientific aspects of lithium batteries (VII) - Positive electrode materials[J]. Energy Storage Science and Technology(储能科学与技术), 2014, 3(1): 53-65. [25] Gao J(高健). Fundamental scientific aspects of lithium batteries (IV) - Phase transition and phase diagram(2)[J]. Energy Storage Science and Technology, 2013, 2(3): 250-266. [26] Gao J(高健), Lyu Y C(吕迎春), Li H(李泓). Fundamental scientific aspects of lithium batteries (III) - Phase transition and phase diagram[J]. Energy Storage Science and Technology, 2013, 2(3): 250-266. [27] Lu Z H, Beaulieu L Y, Donaberger R A, et al. Synthesis, structure, and electrochemical behavior of LiNixLi1/3-2x/3Mn2/3-x/3O2[J]. Journal of The Electrochemical Society, 2002, 149(6): A778-A791. [28] Kim J S, Johnson C S, Thackeray M M. Layered xLiMO2(1-x)Li2MO3 electrodes for lithium batteries: A study of 0.95LiMn0.5Ni0.5O2?0.05Li2TiO3[J]. Electrochemistry Communications, 2002, 4(3): 205-209. |