电化学(中英文) ›› 2020, Vol. 26 ›› Issue (5): 648-662. doi: 10.13208/j.electrochem.200642
收稿日期:
2020-06-10
修回日期:
2020-08-10
出版日期:
2020-10-28
发布日期:
2020-08-18
通讯作者:
陈嘉嘉,董全峰
E-mail:JiaJia.Chen@xmu.edu.cn;qfdong@xmu.edu.cn
基金资助:
CHEN Jia-jia*(), DONG Quan-feng*()
Received:
2020-06-10
Revised:
2020-08-10
Published:
2020-10-28
Online:
2020-08-18
Contact:
CHEN Jia-jia,DONG Quan-feng
E-mail:JiaJia.Chen@xmu.edu.cn;qfdong@xmu.edu.cn
摘要:
锂硫电池因具有远高于传统锂离子电池的理论比容量和质量能量密度,而受到人们的广泛关注,近年来一直是高能锂金属电池领域的研究热点之一. 然而这一体系的一些固有特性问题依然没有得到解决,无法实现稳定理论容量输出,严重阻碍了锂硫电池的实际应用. 其中,比较突出的问题是电池充放电过程中生成可溶性中间产物-多硫化物-对硫基正极、锂基负极和电解液等电池关键组成部分具有深刻的影响. 本综述从多硫化物的热力学和动力学等性质入手,详细介绍了锂硫电池中关键材料的功能化设计和优化策略,并对未来的发展做出展望.
中图分类号:
陈嘉嘉, 董全峰. 锂硫电池及关键材料研究进展[J]. 电化学(中英文), 2020, 26(5): 648-662.
CHEN Jia-jia, DONG Quan-feng. Research Progress of Key Components in Lithium-Sulfur Batteries[J]. Journal of Electrochemistry, 2020, 26(5): 648-662.
图4
董全峰课题组近年来在极性硫宿主材料方面的相关工作总结: (A)单位点吸附的氮掺杂Super P[16],图片已由Chemistry of Materials批准使用; (B)双位点吸附的K3[H3AgPW11O39]多金属氧酸盐团簇[32],图片已由Journal of the American Chemical Society批准使用; (C)多功能电催化的Co, N掺杂ZIF-67衍生石墨碳材料[33],图片已由Energy & Environmental Science批准使用; (D)低温性能的BN/石墨烯复合材料[34],图片已由ACS Nano批准使用; (E)高硫含量的Co4N纳米介孔球[35],图片已由ACS Nano批准使用; (F)高硫含量、高硫载量的类蜂窝状Co@N-C材料[36],图片已由ACS Nano批准使用.
表1
不同硫基正极和锂基负极的材料特性和电化学性能
Category | Material characterization | Issue | Electrochemical performance | Ref. | |
---|---|---|---|---|---|
Sulfur- based cathode | Elemental sulfur | High specific capacity | Polysulfide shuttling | 1000 mAh·g-1 after 20 cycles (0.1 C) | [31] |
Inorganic metal sulfide (Li2S, TiS4, MoS3 et al.) | Li2S : match with non-lithium anode or poor-lithium anode TiS4, MoS3: Lithium intercalation and deintercalation mechanism | Large energy barrier at the first charging Reduced specific capacity | ~1040 mAh·gs-1 after 700 cycles (0.5 C) TiS4: 563 mAh·g-1 (20 mA·g-1, 1.9-3 V) MoS3: 585 mAh·g-1 (0.45 A·g-1, 1.2-3 V) | [79] [80] [81] | |
Organosulfides (Sulfurized polyacrylonitrile et al.) | 1. Overcoming the low conductivity of sulfur. 2. Uniform sulfur distribution 3. Solid-solid conversion reaction mechanism | Low sulfur content | 6 mAh·cm-2 after 120 cycles (sulfur loading 6.23 mg·cm-2) | [78] | |
Lithium- based anode | Lithium foil | High specific capacity | Lithium dendrites | Cycling efficiency of 83% after 54 cycles | [82] |
Lithium powder | Highly distributed current density | Complicated preparation process | Cycling efficiency of 92.9% after 126 cycles | [82] | |
Lithium alloy | 1. Reduced reactivity between lithium and electrolyte 2. Improved interface stability 3. Intercalation and deintercalation mechanism | Dramatic volume change and reduced specific capacity | Capacity retention of 98% after 400 cycles | [83] |
[1] |
Bruce P G, Freunberger S A, Hardwick L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2011,11(1):19-29.
doi: 10.1038/nmat3191 URL pmid: 22169914 |
[2] |
Liu D H, Zhang C, Zhou G M, et al. Catalytic effects in lithium-sulfur batteries: Promoted sulfur transformation and reduced shuttle effect[J]. Advanced Science, 2018,5(1):1700270.
doi: 10.1002/advs.201700270 URL pmid: 29375960 |
[3] | Pang Q, Liang X, Kwok C Y, et al. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes[J]. Nature Energy, 2016,1(9):16132. |
[4] | Wang H Q, Zhang W C, Xu J Z, et al. Advances in polar materials for lithium-sulfur batteries[J]. Advanced Functional Materials, 2018,28(38):1707520. |
[5] | Fan L L, Li M, Li X F, et al. Interlayer material selection for lithium-sulfur batteries[J]. Joule, 2019,3(2):361-386. |
[6] | Sun Y Z, Huang J Q, Zhao C Z, et al. A review of solid electrolytes for safe lithium-sulfur batteries[J]. Science China-Chemistry, 2017,60(12):1508-1526. |
[7] | Li G R, Wang S, Zhang Y N, et al. Revisiting the role of polysulfides in lithium-sulfur batteries[J]. Advanced Materials, 2018,30(22):1705590. |
[8] | Li T, Bai X, Gulzar U, et al. A comprehensive understanding of lithium-sulfur battery technology[J]. Advanced Functional Materials, 2019,29(32):1901730. |
[9] | Chen X, Hou T Z, Persson K A, et al. Combining theory and experiment in lithium-sulfur batteries: Current progress and future perspectives[J]. Materials Today, 2018,22:142-158. |
[10] | Chung S H, Manthiram A. Current status and future prospects of metal-sulfur batteries[J]. Advanced Materials, 2019,31(27):1901125. |
[11] | Mikhaylik Y V, Akridge J R. Polysulfide shuttle study in the Li/S battery system[J]. Journal of the Electrochemical Society, 2004,151(11):A1969-A1976. |
[12] | Yan Y Y, Cheng C, Zhang L, et al. Deciphering the reaction mechanism of lithium-sulfur batteries by in situ/oper-ando synchrotron-based characterization techniques[J]. Advanced Energy Materials, 2019,9(18):1900148. |
[13] |
Zhang L, Qian T, Zhu X Y, et al. In situ optical spectroscopy characterization for optimal design of lithium-sulfur batteries[J]. Chemical Society Reviews, 2019,48(22):5432-5453.
doi: 10.1039/c9cs00381a URL pmid: 31647083 |
[14] |
Lin D C, Liu Y Y, Cui Y. Reviving the lithium metal anode for high-energy batteries[J]. Nature Nanotechnology, 2017,12(3):194-206.
doi: 10.1038/nnano.2017.16 URL pmid: 28265117 |
[15] |
Cuisinier M, Cabelguen P E, Evers S, et al. Sulfur speciation in Li-S batteries determined by operando X-ray absorption spectroscopy[J]. Journal of Physical Chemistry Letters, 2013,4(19):3227-3232.
doi: 10.1021/jz401763d URL |
[16] | Chen J J, Yuan R M, Feng J M, et al. Conductive lewis base matrix to recover the missing link of Li2S8 during the sulfur redox cycle in Li-S battery[J]. Chemistry of Materials, 2015,27(6):2048-2055. |
[17] | Cuisinier M, Hart C, Balasubramanian M, et al. Radical or not radical: Revisiting lithium-sulfur electrochemistry in nonaqueous electrolytes[J]. Advanced Energy Materials, 2015,5(16):1-6. |
[18] |
Steudel R, Chivers T. The role of polysulfide dianions and radical anions in the chemical, physical and biological sciences, including sulfur-based batteries[J]. Chemical Society Reviews, 2019,48(12):3279-3319.
URL pmid: 31123728 |
[19] |
Wujcik K H, Wang D R, Raghunathan A, et al. Lithium polysulfide radical anions in ether-based solvents[J]. Journal of Physical Chemistry C, 2016,120(33):18403-18410.
doi: 10.1021/acs.jpcc.6b04264 URL |
[20] | Liu X, Huang J Q, Zhang Q, et al. Nanostructured metal oxides and sulfides for lithium-sulfur batteries[J]. Advanced Materials, 2017,29(20):1601759. |
[21] |
Andersen A, Rajput N N, Han K S, et al. Structure and dynamics of polysulfide clusters in a nonaqueous solvent mixture of 1,3-dioxolane and 1,2-dimethoxyethane[J]. Chemistry of Materials, 2019,31(7):2308-2319.
doi: 10.1021/acs.chemmater.8b03944 URL |
[22] | Park C, Ronneburg A, Risse S, et al. Structural and transport properties of Li/S battery electrolytes: role of the polysulfide species[J]. Journal of Physical Chemistry C, 2019,123(16):10167-10177. |
[23] | Gupta A, Bhargav A, Jones J P, et al. Influence of lithium polysulfide clustering on the kinetics of electrochemical conversion in lithium-sulfur batteries[J]. Chemistry of Materials, 2020,32(5):2070-2077. |
[24] |
Partovi-Azar P, Kühne T D, Kaghazchi P. Evidence for the existence of Li2S2 clusters in lithium-sulfur batteries: Ab initio Raman spectroscopy simulation[J]. Physical Chemistry Chemical Physics, 2015,17(34):22009-22014.
doi: 10.1039/c5cp02781k URL pmid: 26235886 |
[25] | Kumaresan K, Mikhaylik Y, White R E. A mathematical model for a lithium-sulfur cell[J]. Journal of the Electrochemical Society, 2008,155(8):A576-A582. |
[26] | Mikhaylik Y V, Akridge J R. Low temperature performance of Li/S batteries[J]. Journal of the Electrochemical Society, 2003,150(3):A306-A311. |
[27] | Zhang B(张波), Liu J(刘佳), Liu X C(刘晓晨), et al. Electrochemical properties of sulfur in different carbon support materials[J]. Journal of Electrochemistry (电化学), 2019,25(6):749-756. |
[28] | Zang J, An T, Dong Y, et al. Hollow-in-hollow carbon spheres with hollow foam-like cores for lithium-sulfur batteries[J]. Nano Research, 2015,8(8):2663-2675. |
[29] |
Chen J J, Zhang Q, Shi Y N, et al. A hierarchical architecture S/MWCNT nanomicrosphere with large pores for lithium sulfur batteries[J]. Physical Chemistry Chemical Physics, 2012,14(16):5376-5382.
URL pmid: 22382743 |
[30] | Wei Z K, Chen J J, Qin L L, et al. Two-step hydrothermal method for synjournal of sulfur-graphene hybrid and its application in lithium sulfur batteries[J]. Journal of the Electrochemical Society, 2012,159(8):A1236-A1239. |
[31] |
Ji X, Lee K T, Nazar L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials, 2009,8(6):500-506.
doi: 10.1038/nmat2460 URL pmid: 19448613 |
[32] |
Ye J C, Chen J J, Yuan R M, et al. Strategies to explore and develop reversible redox reactions of Li-S in electrode architectures using silver-polyoxometalate clusters[J]. Journal of the American Chemical Society, 2018,140(8):3134-3138.
doi: 10.1021/jacs.8b00411 URL pmid: 29425034 |
[33] | Li Y J, Fan J M, Zheng M S, et al. A novel synergistic composite with multi-functional effects for high-performance Li-S batteries[J]. Energy & Environmental Science, 2016,9(6):1998-2004. |
[34] |
Deng D R, Xue F, Bai C D, et al. Enhanced adsorptions to polysulfides on graphene-supported BN nanosheets with excellent Li-S battery performance in a wide temperature range[J]. ACS Nano, 2018,12(11):11120-11129.
doi: 10.1021/acsnano.8b05534 URL pmid: 30359514 |
[35] |
Deng D R, Xue F, Jia Y J, et al. Co4N nanosheet assembled mesoporous sphere as a matrix for ultrahigh sulfur content lithium-sulfur batteries[J]. ACS Nano, 2017,11(6):6031-6039.
URL pmid: 28570815 |
[36] |
Li Y, Fan J, Zhang J, et al. a honeycomb-like Co@N-C composite for ultra-high sulfur loading Li-S batteries[J]. ACS Nano, 2017,11(11):11417-11424.
doi: 10.1021/acsnano.7b06061 URL pmid: 29045778 |
[37] |
Jia P, Hu T D, He Q B, et al. Synjournal of a macroporous conjugated polymer framework: Iron doping for highly stable, highly efficient lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2019,11(3):3087-3097.
doi: 10.1021/acsami.8b19593 URL pmid: 30586280 |
[38] | Xu J, Bi S M, Tang W Q, et al. Duplex trapping and charge transfer with polysulfides by a diketopyrrolopyrrole-based organic framework for high-performance lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2019,7(30):18100-18108. |
[39] |
Hou T Z, Chen X, Peng H J, et al. Design principles for heteroatom-doped nanocarbon to achieve strong anchoring of polysulfides for lithium-sulfur batteries[J]. Small, 2016,12(24):3283-3291.
doi: 10.1002/smll.201600809 URL pmid: 27168000 |
[40] |
Zheng J M, Tian J, Wu D X, et al. Lewis acid-base interactions between polysulfides and metal organic framework in lithium sulfur batteries[J]. Nano Letters, 2014,14(5):2345-2352.
URL pmid: 24702610 |
[41] |
Seh Z W, Yu J H, Li W Y, et al. Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes[J]. Nature Communications, 2014,5:5017.
URL pmid: 25254637 |
[42] | Wang Y K, Zhang R F, Pang Y C, et al. Carbon@titanium nitride dual shell nanospheres as multi-functional hosts for lithium sulfur batteries[J]. Energy Storage Materials, 2019,16:228-235. |
[43] |
Salem H A, Babu G, Rao C V, et al. Electrocatalytic polysulfide traps for controlling redox shuttle process of Li-S batteries[J]. Journal of the American Chemical Society, 2015,137(36):11542-11545.
URL pmid: 26331670 |
[44] |
Zhou G M, Tian H Z, Jin Y, et al. Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017,114(5):840-845.
URL pmid: 28096362 |
[45] |
Liang X, Hart C, Pang Q, et al. A highly efficient polysulfide mediator for lithium-sulfur batteries[J]. Nature Communications, 2015,6:5682.
URL pmid: 25562485 |
[46] | Tsao Y, Lee M, Miller E C, et al. Designing a quinone-based redox mediator to facilitate Li2S oxidation in Li-S batteries[J]. Joule, 2019,3(3):872-884. |
[47] | Liang X, Kwok C Y, Marzano F L, et al. Tuning transition metal oxide-sulfur interactions for long life lithium sulfur batteries: The “goldilocks” principle[J]. Advanced Energy Materials, 2015,6:1501636. |
[48] |
Li G, Wang X L, Seo M H, et al. Chemisorption of polysulfides through redox reactions with organic molecules for lithium-sulfur batteries[J]. Nature Communications, 2018,9(1):705.
URL pmid: 29453414 |
[49] |
Wu X, Liu N, Guan B, et al. Redox mediator: A new strategy in designing cathode for prompting redox process of Li-S batteries[J]. Advanced Science, 2019,6(21):1900958.
doi: 10.1002/advs.201900958 URL pmid: 31728278 |
[50] |
Meini S, Elazari R, Rosenman A, et al. The use of redox mediators for enhancing utilization of Li2S cathodes for advanced Li-S battery systems[J]. Journal of Physical Chemistry Letters, 2014,5(5):915-918.
URL pmid: 26274088 |
[51] |
Gerber L C H, Frischmann P D, Fan F Y, et al. Three-dimensional growth of Li2S in lithium-sulfur batteries promoted by a redox mediator[J]. Nano Letters, 2016,16(1):549-554.
doi: 10.1021/acs.nanolett.5b04189 URL pmid: 26691496 |
[52] |
Liu Y Y, Tzeng Y K, Lin D C, et al. An ultrastrong double-layer nanodiamond interface for stable lithium metal anodes[J]. Joule, 2018,2(8):1595-1609.
doi: 10.1016/j.joule.2018.05.007 URL |
[53] |
Chen L, Huang Z N, Shahbazian-Yassar R, et al. Directly formed alucone on lithium metal for high performance Li batteries and Li-S batteries with high sulfur mass-loading[J]. ACS Applied Materials & Interfaces, 2018,10(8):7043-7051.
doi: 10.1021/acsami.7b15879 URL pmid: 29381865 |
[54] | Shen X, Zhang R, Chen X, et al. The failure of solid electrolyte interphase on Li metal anode: Structural uniformity or mechanical strength?[J]. Advanced Energy Materials, 2020,10(10):1903645. |
[55] |
Gu Y, Wang W W, Li Y J, et al. Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes[J]. Nature Communications, 2018,9(1):1339.
doi: 10.1038/s41467-018-03466-8 URL pmid: 29632301 |
[56] |
Ma G Q, Wen Z Y, Wu M F, et al. A lithium anode protection guided highly-stable lithium-sulfur battery[J]. Chemical Communications, 2014,50(91):14209-14212.
URL pmid: 25285341 |
[57] |
Zhang R, Cheng X B, Zhao C Z, et al. Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth[J]. Advanced Materials, 2016,28(11):2155-2162.
doi: 10.1002/adma.201504117 URL pmid: 26754639 |
[58] | Yang C P, Yin Y X, Zhang S F, et al. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes[J]. Nature Communications, 2015,6(1):8058. |
[59] | Xu P, Lin X D, Hu X Y, et al. High reversible Li plating and stripping by in-situ construction a multifunctional lithium-pinned array[J]. Energy Storage Materials, 2020,28:188-195. |
[60] |
Cheng X B, Peng H J, Huang J Q, et al. Dendrite-free nanostructured anode: Entrapment of lithium in a 3D fibrous matrix for ultra-stable lithium-sulfur batteries[J]. Small, 2014,10(21):4257-4263.
doi: 10.1002/smll.201401837 URL pmid: 25074801 |
[61] | Zhang R, Chen X, Shen X, et al. Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries[J]. Joule, 2018,2(4):764-777. |
[62] |
Gu Y, Xu H Y, Zhang X G, et al. Lithiophilic faceted Cu(100) surfaces: High utilization of host surface and cavities for lithium metal anodes[J]. Angewandte Chemie International Edition, 2018,58(10):3092-3096.
doi: 10.1002/anie.201812523 URL pmid: 30589160 |
[63] | Li K, Hu Z Y, Ma J Z, et al. A 3D and stable lithium anode for high-performance lithium-iodine batteries[J]. Advanced Materials, 2019,31(33):1902399. |
[64] | Cheng X B, Yan C, Chen X, et al. Implantable solid electrolyte interphase in lithium-metal batteries[J]. Chem, 2017,2(2):258-270. |
[65] | Li W Y, Yao H B, Yan K, et al. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth[J]. Nature Communications, 2015,6(1):7436. |
[66] | Zhan L, Liu Z C, Fu W J, et al. Phosphorous pentasulfide as a novel additive for high-performance lithium-sulfur batteries[J]. Advanced Functional Materials, 2013,23(8):1064-1069. |
[67] | Choi J W, Cheruvally G, Kim D S, et al. Rechargeable lithium/sulfur battery with liquid electrolytes containing toluene as additive[J]. Journal of Power Sources, 2008,183(1):441-445. |
[68] | Zheng J M, Engelhard M H, Mei D H, et al. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries[J]. Nature Energy, 2017,2(3):17012. |
[69] |
Wu F, Qian J, Chen R J, et al. An effective approach to protect lithium anode and improve cycle performance for Li-S batteries[J]. ACS Applied Materials & Interfaces, 2014,6(17):15542-15549.
URL pmid: 25100666 |
[70] | Zu C X, Dolocan A, Xiao P H, et al. Breaking down the crystallinity: The path for advanced lithium batteries[J]. Advanced Energy Materials, 2016,6(5):1501933. |
[71] |
Braga M H, Oliveira J E, Kai T H, et al. Extraordinary dielectric properties at heterojunctions of amorphous ferroelectrics[J]. Journal of the American Chemical Society, 2018,140(51):17968-17976.
doi: 10.1021/jacs.8b09603 URL pmid: 30482017 |
[72] | Zhou Y N, Wu C L, Zhang H, et al. Electrochemical reactivity of Co-Li2S nanocomposite for lithium-ion batteries[J]. Electrochimica Acta, 2007,52(9):3130-3136. |
[73] | Fu K K, Gong Y H, Hitz G T, et al. Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal-sulfur batteries[J]. Energy & Environmental Science, 2017,10(7):1568-1575. |
[74] |
Zhao C Z, Zhang X Q, Cheng X B, et al. An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017,114(42):11069-11074.
URL pmid: 28973945 |
[75] | Chen J H(陈加航), Yang H J(杨慧军), Guo C(郭城), et al. Current status and prospect of battery configuration in Li-S system[J]. Journal of Electrochemistry (电化学), 2019,25(1):3-16. |
[76] |
Gupta A, Bhargav A, Manthiram A. Highly solvating ele-ctrolytes for lithium-sulfur batteries[J]. Advanced Energy Materials, 2019,9(6):1803096.
doi: 10.1002/aenm.201803096 URL pmid: 31807123 |
[77] |
Cheng L, Curtiss L A, Zavadil K R, et al. Sparingly solvating electrolytes for high energy density lithium-sulfur batteries[J]. ACS Energy Letters, 2016,1(3):503-509.
doi: 10.1021/acsenergylett.6b00194 URL |
[78] |
Yang H J, Chen J H, Yang J, et al. Dense and high loading sulfurized pyrolyzed poly(acrylonitrile)(S@pPAN) cathode for rechargeable lithium batteries[J]. Energy Storage Materials, 2020,31:187-194.
doi: 10.1016/j.ensm.2020.06.003 URL |
[79] |
Wu F X, Lee J T, Zhao E B, et al. Graphene-Li2S-carbon nanocomposite for lithium-sulfur batteries[J]. ACS Nano, 2016,10:1333-1340.
doi: 10.1021/acsnano.5b06716 URL pmid: 26647225 |
[80] |
Sakuda A, Taguchi N, Takeuchi T, et al. Amorphous TiS4 positive electrode for lithium-sulfur secondary batteries[J]. Electrochemistry Communications, 2013,31:71-75.
doi: 10.1016/j.elecom.2013.03.004 URL |
[81] |
Ye H L, Ma L, Zhou Y, et al. Amorphous MoS3 as the sulfur-equivalent cathode material for room-temperature Li-S and Na-S batteries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017,114(50):13091-13096.
doi: 10.1073/pnas.1711917114 URL pmid: 29180431 |
[82] |
Kim J S, Yoon W Y. Improvement in lithium cycling efficiency by using lithium powder anode[J]. Electrochimica Acta, 2004,50:531-534.
doi: 10.1016/j.electacta.2003.12.071 URL |
[83] |
Zhao J, Zhou G M, Yan K, et al. Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes[J]. Nature Nanotechnology, 2017,12(10):993-999.
URL pmid: 28692059 |
[1] | 王杜丹, 王非, 翟欢欢, 李玉鹏, 杨纳川, 陈康华. 富锂层状正极材料Li2MnO3的表面改性及其电化学性能研究[J]. 电化学(中英文), 2020, 26(2): 289-297. |
[2] | 唐致远, 袁威, 闫继, 毛文峰, 马莉. 钼掺杂磷酸钒锂正极材料的制备及其电化学性能研究[J]. 电化学(中英文), 2012, 18(2): 113-117. |
[3] | 马平平, 刘志坚, 夏建华, 陈宇, 胡朴, 卢志超, 夏定国. 复合材料xLiFePO4·yLi3V2(PO4)3的合成及电化学性能(英文)[J]. 电化学(中英文), 2012, 18(1): 31-36. |
[4] | 吴宇平, 万春荣, 姜长印, 李建军. 锂离子二次电池碳负极材料的改性[J]. 电化学(中英文), 1998, 4(3): 286-292. |
[5] | 孙培菊, 谷元鹏, 由万胜, 谭忠印, 衣宝廉. 铁-杂多酸液流电池的研究(英文)[J]. 电化学(中英文), 1997, 3(1): 71-71. |
[6] | 冯力, 常玉勤, 伍丽娥, 李泓, 单义斌, 陆天虹. 尖晶石LiMn_2O_4锂充放电池的电化学研究[J]. 电化学(中英文), 1997, 3(1): 76-78. |
[7] | 章福平. 二次Li/LiNi_(0.3)Co_(0.7)O_2电池反应研究[J]. 电化学(中英文), 1996, 2(3): 305-309. |
[8] | 丁黎明. 梳状高分子固体电解质的离子导电性研究[J]. 电化学(中英文), 1996, 2(3): 299-304. |
[9] | 章福平. 酒石酸法合成的LiCoO_2的结构及其二次锂电池行为研究[J]. 电化学(中英文), 1995, 1(3): 342-347. |
[10] | 郭鸣凤,杨瑞敏,张泽波,叶劲草. LiCoO_2的合成及其在锂蓄电池中的行为[J]. 电化学(中英文), 1995, 1(1): 70-77. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||