欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

碱处理对PtRu/WC电极材料结构及甲醇电催化氧化性能的影响

  • 郎小玲 ,
  • 施梅勤 ,
  • 江叶坤 ,
  • 马淳安
展开
  • 浙江工业大学 化学工程与材料学院,绿色化学合成技术国家重点实验室培育基地,科技部能源材料及应用国际科技合作基地,浙江 杭州 310032

收稿日期: 2012-07-10

  修回日期: 2012-12-24

  网络出版日期: 2012-12-29

基金资助

国际科技合作计划((No. 2010DFB63680)、浙江省重大科技专项国际合作项目(No. 2008C14040)、浙江省自然科学基金重点项目(No. Z4100790)及973项目(No. 2012CB722604)资助

Influence of Pretreatment on Electrocatalytic Property for Methanol Oxidation of PtRu/WC

  • LANG Xiao-Ling ,
  • SHI Mei-Qin ,
  • JIANG Ye-Kun ,
  • MA Chun-An
Expand
  • State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032, China

Received date: 2012-07-10

  Revised date: 2012-12-24

  Online published: 2012-12-29

摘要

本文采用不同pH值的KOH溶液对WC材料进行了不同时间的碱处理,并以该WC为载体通过微波加热还原法制备PtRu/WC 复合材料. 采用XRD对材料进行结构表征,通过循环伏安法和计时电流法测试电极对甲醇的电催化氧化性能. 结果表明,经不同碱性条件处理的WC材料表面更易于铂钌的负载,其中经强碱(pH = 14)的KOH溶液处理后可在WC表面得到结晶度最好的铂钌合金,且所得电催化剂PtRu/WC电极的性能最佳,而经碱处理5 h的WC负载的PtRu/WC电极对甲醇氧化的效果最优.

本文引用格式

郎小玲 , 施梅勤 , 江叶坤 , 马淳安 . 碱处理对PtRu/WC电极材料结构及甲醇电催化氧化性能的影响[J]. 电化学, 2013 , 19(4) : 350 -354 . DOI: 10.61558/2993-074X.2120

Abstract

The surface of tungsten carbide (WC) was treated by potassium hydroxide (KOH) at different pH values for different time. The PtRu/WC composite was prepared by microwave-assisted polyol method. The phase structure of PtRu/WC composites were characterized by XRD. The electrocatalytic activity was tested by cyclic voltammetry and chronoamperometry. The results indicated that with different pH treatments WC became more readily supported on PtRu. When treating WC in KOH at pH = 14, PtRu exhibited the best degree of crystallinity on WC surface, leading to the highest electrocatalytic activity of PtRu/WC. Moreover, the optimized activity of PtRu/WC towards methanol oxidation was obtained by pretreating WC in KOH for 5 h.

参考文献

[1] Arico A S, Srinivasan S, Antonucci V. DMFCs: From fundamental aspects to technology development[J]. Fuel Cell, 2001, 1(2): 133-161.
[2] Gu Y J, Wong W T. Nanostructure PtRu/MWNTs as anode catalysts prepared in a vacuum for direct methanol oxidation[J]. Langmuir, 2006, 22(26): 11447-11452.
[3] Ma C A(马淳安), Yu B(俞彬), Shi M Q(施梅勤), et al. Preparation and electrocatalytic activity of the Pt/WC/TiO2 composite[J]. Journal of Electrochemistry (电化学), 2011, 17(2): 149-154.
[4] Jovanovic V M, Terzic S, Tripkovic A V, et al. The Effect of electrochemically treated glassy carbon on the activity of supported Pt catalyst in methanol oxidation[J]. Electrochemistry Communications, 2004, 6(12): 1254-1258.
[5] Xu W L, Lu T H, Liu C P, et al. Nanostructured PtRu/C as anode catalysts prepared in a pseudomicroemulsion with ionic surfactant for direct methanol fuel cell[J]. Journal of Physical Chemistry B, 2005, 109(30): 14325-14330.
[6] Hamnett A. Mechanism and electrocatalysis in the direct methanol fuel cell[J]. Catalysis Today, 1997, 38(4): 445-457.
[7] Wasmus S, Kver A. Methanol oxidation and direct methanol fuel cells: A selective review[J]. Journal of Electroanalytical Chemistry, 1999, 461(1): 14-31.
[8] Yao Y L, Ding Y, Ye L S, et al. Two-step pyrolysis process to synthesize highly dispersed Pt-Ru/carbon nanotube catalysts for methanol electrooxidation[J]. Carbon, 2006, 44(1): 61-66.
[9] Chang H L, Chi W, Dong I K, et al. Electrooxidation of methanol on Pt-Ru catalysts supported by basal plane graphite in phosphoric acid solution[J]. Journal of Power Sources, 2000, 86(1/2): 478-481.
[10] Xue X Z, Lua T H, Liu C P, et al. Novel preparation method of Pt-Ru/C catalyst using imidazolium ionic liquid as solvent[J]. Electrochimica Acta, 2005, 50(16/17): 3470-3478.
[11] Min K J, Hideo D, Ki R L, et al. CO tolerant Pt/WC methanol electro-oxidation catalyst[J]. Electrochemistry Communications, 2007, 9(11): 2692-2695.
[12] Ma C A, Brandon N, Li G H. Preparation and formation mechanism of hollow microspherical tungsten carbide with mesoporosity[J]. Journal of Physical Chemistry C, 2007, 111(26): 9504-9508.
[13] Raman G, Jae S L. Tungsten carbide microspheres as a noble-metal-economic electrocatalyst for methanol oxidation[J]. Angewandte Chemie International Edition, 2005, 44: 6557-6560.
[14] Ma C A, Sheng J F, Nigel B, et al. Preparation of tungsten carbide-supported nano-platinum catalyst and its electrocatalytic activity for hydrogen evolution[J]. International Journal of Hydrogen Energy, 2007, 32(14): 2824-2829.
[15] Houston J E, Laramore G E, Park R L. Surface electronic properties of tungsten, tungsten carbide, and platinum[J]. Science, 1974, 185: 258-260.
[16] Mcintyre D R, Burstein G T, Vossen A. Effect of carbon monoxide on the electrooxidation of hydrogen by tungsten carbide[J]. Jounal of Power Sources, 2002, 107(1): 67-73.
[17] Zhao Z Z, Fang X, Li Y L. The origin of the high performance of tungsten carbides/carbon nanotubes supported Pt catalysts for methanol electrooxidation[J]. Electrochemistry Communication, 2009, 11(2): 290-293.
[18] Raman G S, Dong J H, Jae S L. Platinized mesoporous tungsten carbide for electrochemical methanol oxidation[J]. Electrochemistry Communication, 2007, 9(10): 2576-2579.
[19] Min K J, Ki R L, Won S L. Investigation of Pt/WC/C catalyst for methanol electro-oxidation and oxygen electro-reduction[J]. Jounal of Power Sources, 2008, 185: 927-931.
[20] Shen P K, Yin S B, Li Z H, et al. Preparation and performance of nanosized tungsten carbides for electrocatalysis[J]. Electrochimica Acta, 2010, 55: 7969–7974.
文章导航

/