从电催化氧化降解有机污染物的机理出发,研究了草酸在Ti/IrO2-Ta2O5阳极圆柱形电解槽中的电催化氧化过程,建立了描述整个降解过程的瞬时电流效率与溶液本体有机物浓度的关系式. 通过实验对模型进行了验证,实验结果与模型计算结果基本一致,并讨论了误差产生的原因.
苏静
,
林海波
,
徐红
,
黄卫民
,
何亚鹏
. 草酸在Ti/IrO2-Ta2O5阳极圆柱形电解槽中的电催化氧化降解动力学[J]. 电化学, 2013
, 19(4)
: 293
-299
.
DOI: 10.61558/2993-074X.2114
The electrocatalytic oxidation degradation kinetics of oxalic acid in a cylindrical electrochemical reactor with Ti/IrO2-Ta2O5 as an anode was studied. The relation between instantaneous current efficiency and organic concentration in bulk was established based on the two paths for direct electrochemical oxidations, and the theoretical model was verified by experiments. The experimental resultswere reasonably consistent with the established kinetic model. Furthermore, the competition between the two paths was explored with the modelparameter analysis.
[1] Rajeshwar K, Ibanex J G, Swain G M. Electrochemistry and the Environment[J]. Journal of Applied Electrochemistry, 1994, 24(11): 1077-1091.
[2] Jüttner K, Galla U, Schmieder H. Electrochemical approaches to environmental problems in the process industry[J]. Electrochimica Acta, 2000, 45(15-16): 2575-2594.
[3] Mook W T, Chakrabarti M H, Aroua M K, et al. Removal of total ammonia nitrogen (TAN), nitrate and total organic carbon (TOC) from aquaculture wastewater using electrochemical technology: A review[J]. Desalination, 2012, 285(1): 1-13.
[4] Rajkumar D, Palanivelu K. Electrochemical treatment of industrial wastewater[J]. Journal of Hazardous Materials. 2004, 113(1/3): 123-129.
[5] Carlos A. Martínez H, Enric B. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: A general review[J]. Applied Catalysis B: Environmental, 2009, 87(3/4): 105-145.
[6] Panizza M., Cerisola G. Direct and mediated anodic oxidation of organic pollutants[J]. Chemical Review, 2009, 109(12): 6541-6569.
[7] Lin H B(林海波), Wu Z Y(伍振毅), Huang W M(黄为民), et al. Development and direction of electrochemical technologies for industrial wastewater treatment[J]. Chemical Industry and Engineering Progress(化工进展), 2008, 27(2): 223-230.
[8] Carlos A, Martínez H, Sergio F. Electrochemical oxidation of organic pollutants for the wastewater treatment: Direct and indirect processes[J]. Chemical Society Reviews, 2006, 35(12): 1324-1340.
[9] Carlos A, Martínez H, Sergio Ferro. A, et al. Electrochemical incineration of oxalic acid: Role of electrode material[J]. Electrochimica Acta, 2004, 49(22/23): 4027-4034
[10] Comninellis C. Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for wastewater treatment[J]. Electrochimica Acta, 1994, 39(11/12): 1857-1862.
[11] Scialdone O, Randazzo S, Galia A, et al. Electrochemical oxidation of organics at metal oxide electrodes: The incineration of oxalic acid at IrO2-Ta2O5 (DSA-O2) anode[J]. Electrochimica Acta, 2009, 54(4): 1210-1217.
[12] Treimer S E, Feng J, Scholten M D, et al. Comparison of voltammetric responses of toluene and xylenes at iron(III)-doped, bismuth(V)-doped, and undoped β-lead dioxide film electrodes in 0.50 M H2SO4[J]. Journal of The Electrochemical Society, 2001, 148(12): E459-464.