欢迎访问《电化学(中英文)》期刊官方网站,今天是
环境电化学近期研究专辑(吉林大学 林海波教授主编)

草酸在Ti/IrO2-Ta2O5阳极圆柱形电解槽中的电催化氧化降解动力学

  • 苏静 ,
  • 林海波 ,
  • 徐红 ,
  • 黄卫民 ,
  • 何亚鹏
展开
  • 1.吉林大学化学学院,吉林 长春410083;2.广西大学化学化工学院,广西 南宁530004;3.江苏法尔胜泓昇集团有限公司,江苏 江阴214400

收稿日期: 2012-12-25

  修回日期: 2013-03-19

  网络出版日期: 2013-03-24

基金资助

国家自然科学基金项目(No. 21273097)和高等学校博士学科点专项科研基金项目(No. 20120061110015)资助

Electrocatalytic Oxidation Degradation Kinetics of Oxalic Acid in a Cylindrical Electrochemical Reactor with Ti/IrO2-Ta2O5 Anode

  • SU Jing ,
  • LIN Hai-Bo ,
  • XU Hong ,
  • HUANG Wei-Min ,
  • HE Ya-Peng
Expand
  • 1. College of Chemistry, Jilin University, Changchun130021, China; 2. School of Chemistry and Chemical Engineering, Guangxi University, Nanning530004, China; 3. Jiangsu Fasten Group LTD.CO., Jiangyin214400, Jiangsu, China

Received date: 2012-12-25

  Revised date: 2013-03-19

  Online published: 2013-03-24

摘要

从电催化氧化降解有机污染物的机理出发,研究了草酸在Ti/IrO2-Ta2O5阳极圆柱形电解槽中的电催化氧化过程,建立了描述整个降解过程的瞬时电流效率与溶液本体有机物浓度的关系式. 通过实验对模型进行了验证,实验结果与模型计算结果基本一致,并讨论了误差产生的原因.

本文引用格式

苏静 , 林海波 , 徐红 , 黄卫民 , 何亚鹏 . 草酸在Ti/IrO2-Ta2O5阳极圆柱形电解槽中的电催化氧化降解动力学[J]. 电化学, 2013 , 19(4) : 293 -299 . DOI: 10.61558/2993-074X.2114

Abstract

The electrocatalytic oxidation degradation kinetics of oxalic acid in a cylindrical electrochemical reactor with Ti/IrO2-Ta2O5  as an anode was studied. The relation between instantaneous current efficiency and organic concentration in bulk was established based on the two paths for direct electrochemical oxidations, and the theoretical model was verified by experiments. The experimental resultswere reasonably consistent with the established kinetic model. Furthermore, the competition between the two paths was explored with the modelparameter analysis.

参考文献

[1] Rajeshwar K, Ibanex J G, Swain G M. Electrochemistry and the Environment[J]. Journal of Applied Electrochemistry, 1994, 24(11): 1077-1091.
[2] Jüttner K, Galla U, Schmieder H. Electrochemical approaches to environmental problems in the process industry[J]. Electrochimica Acta, 2000, 45(15-16): 2575-2594.
[3] Mook W T, Chakrabarti M H, Aroua M K, et al. Removal of total ammonia nitrogen (TAN), nitrate and total organic carbon (TOC) from aquaculture wastewater using electrochemical technology: A review[J]. Desalination, 2012, 285(1): 1-13.
[4] Rajkumar D, Palanivelu K. Electrochemical treatment of industrial wastewater[J]. Journal of Hazardous Materials. 2004, 113(1/3): 123-129.
[5] Carlos A. Martínez H, Enric B. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: A general review[J]. Applied Catalysis B: Environmental, 2009, 87(3/4): 105-145.
[6] Panizza M., Cerisola G. Direct and mediated anodic oxidation of organic pollutants[J]. Chemical Review, 2009, 109(12): 6541-6569.
[7] Lin H B(林海波), Wu Z Y(伍振毅), Huang W M(黄为民), et al. Development and direction of electrochemical technologies for industrial wastewater treatment[J]. Chemical Industry and Engineering Progress(化工进展), 2008, 27(2): 223-230.
[8] Carlos A, Martínez H, Sergio F. Electrochemical oxidation of organic pollutants for the wastewater treatment: Direct and indirect processes[J]. Chemical Society Reviews, 2006, 35(12): 1324-1340.
[9] Carlos A, Martínez H, Sergio Ferro. A, et al. Electrochemical incineration of oxalic acid: Role of electrode material[J]. Electrochimica Acta, 2004, 49(22/23): 4027-4034
[10] Comninellis C. Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for wastewater treatment[J]. Electrochimica Acta, 1994, 39(11/12): 1857-1862.
[11] Scialdone O, Randazzo S, Galia A, et al. Electrochemical oxidation of organics at metal oxide electrodes: The incineration of oxalic acid at IrO2-Ta2O5 (DSA-O2) anode[J]. Electrochimica Acta, 2009, 54(4): 1210-1217.
[12] Treimer S E, Feng J, Scholten M D, et al. Comparison of voltammetric responses of toluene and xylenes at iron(III)-doped, bismuth(V)-doped, and undoped β-lead dioxide film electrodes in 0.50 M H2SO4[J]. Journal of The Electrochemical Society, 2001, 148(12): E459-464.
文章导航

/