欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

基于聚丙烯酰胺凝胶软印章的电化学纳米加工(英文)

  • 孙文 ,
  • 樊海涛 ,
  • 张大霄 ,
  • 胡冬洁 ,
  • 周勇亮
展开
  • 厦门大学 固体表面物理化学国家重点实验室,厦门大学化学化工学院,厦门,361005

收稿日期: 2013-03-20

  修回日期: 2013-04-22

  网络出版日期: 2013-04-30

基金资助

This work was supported by National Science Foundation of China (No. 91123002), Innovation Method Fund of China (No. 2010IM040100) and National Instrumentation Program (No. 2011YQ030124).

Electrochemical Nanofabrication Using Polyacrylamide Hydrogel as Soft Stamps

  • SUN Wen ,
  • FAN Hai-Tao ,
  • ZHANG Da-Xiao ,
  • HU Dong-Jie ,
  • ZHOU Yong-Liang
Expand
  • State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen, Fujian 361005, China?

Received date: 2013-03-20

  Revised date: 2013-04-22

  Online published: 2013-04-30

摘要

电化学刻蚀使用腐蚀性小的电解质溶液,且溶液可使用周期长,是一种环境友好的加工工艺. 本文采用聚丙烯酰胺水凝胶(PAG)作为软印章,辅以优化工艺,将电化学湿印章技术(E-WETS)的加工精度从几十微米提高到了200纳米. 将新配制的聚丙烯酰胺水凝胶浇注在具有纳米结构的软模板表面,固化后脱模并保存于0.2 mol·L-1 KCl溶液中,在合适电位和压力下,对硅片表面金膜进行电化学湿法刻蚀,分别研究了聚丙烯酰胺水凝胶的聚合条件、电化学加工电位以及水凝胶表面压力对加工结果的影响. 实验表明,在最优条件下可加工出直径为200纳米的特征点阵结构,且该方法具有较好的可靠性和稳定性.

本文引用格式

孙文 , 樊海涛 , 张大霄 , 胡冬洁 , 周勇亮 . 基于聚丙烯酰胺凝胶软印章的电化学纳米加工(英文)[J]. 电化学, 2013 , 19(3) : 262 -266 . DOI: 10.61558/2993-074X.2958

Abstract

The fabrication resolution of electrochemical wet stamping (E-WETS) was enhanced to several hundred nanometers from several ten micrometers by using polycarylamide gel (PAG) as soft stamps and through optimized processes. The PAG stamp was cured on a nanopatterned soft mold and soaked with 0.2 mol·L-1 KCl solution, then contacted with a silicon wafer with gold film and applied with electric field. And the gold nanopatterns were achieved by the selective anodic dissolving, the diameter of fabricated gold spot was around 200 nm. The parameters which affected the fabrication processes have been discussed in detail.

参考文献

[1] Chou S Y, Krauss P R, Renstrom P J. Imprint of sub-25nm vias and trenches in polymers[J]. Applied Physics Letters, 1995, 67(21): 3114-3116.
[2] Chou S Y, Krauss P R, Renstrom P J. Imprint lithography with 25-nanometer resolution[J]. Science, 1996, 272(5258): 85-87.
[3] Wang C, Chou S Y. Integration of metallic nanostructures in fluidic channels for fluorescence and Raman enhancement by nanoimprint lithography and lift-off on compositional resist stack[J]. Microelectronic Engineering, 2012, 98: 693-697.
[4] Qin D, Xia Y N, Whitesides G M. Soft lithography for micro-and nanoscale patterning[J]. Nature Protocols, 2010, 5(3): 491-502.
[5] Xia Y N, Whitesides G M. Soft lithography[J]. Angewandte Chemie-International Edition, 1998, 37 (5): 551-575.
[6] Kumar A, Whitesides G M. Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastic stamp and an alkanethiol ink followed by chemical etching[J]. Applied Physics Letters, 1993, 63(14): 2002-2004.
[7] Xia Y N, McClelland J J, Gupta R, et al. Replica molding using polymeric materials: A practical step toward nanomanufacturing [J]. Advanced Materials, 1997, 9 (2): 147-149.
[8] Xia Y N, Whitesides G M. Fabrication of three-dimensional microstructures: Microtransfer molding [J]. Advanced Materials, 1996, 8(10): 837-840.
[9] Kumar A, Whitesides G M. Sovent-assisted micro contact molding: A convenient method for fabricating three dimensional structures of polymeric materials[J]. Advanced Materials, 1997, 9(8): 651-654.
[10] Baytekin B, Baytekin H T, Grzybowski B A. What really drives chemical reaction on contact charged surfaces[J]. Journal of The American Chemical Society, 2012, 134(17): 7223-7226.
[11] Campbell C J, Smoukov S K, Bishop K J M, et al. Direct print of 3D and curvilinear micrometer-sized architectures into solid substrated with sub-micrometer resolution[J]. Advanced Materials, 2006, 18(15): 2004-2008.
[12] Campbell C J, Fialkowski M, Klajn R. Color micro- and nanopatterning with counter-propagating reaction-diffusion fronts[J]. Advanced Materials, 2004, 16(21): 1912-1917.
[13] Grzybowski B A, Bishop K J M, Campbell C J, et al. Micro-and nanotechnology via reaction-diffusion [J]. Soft Matter, 2005, 1(2): 114-128.
[14] Campbell C J, Smoukov S K, Bishop K J M, et al. Reactive surface micropatterning by wet stamping[J]. Langmuir, 2005, 21(7): 2637-2640.
[15] Tang J, Zhuang J L, Zhang L, et al. Cu micropatterning on n-Si(111) by selective electrochemical deposition using an agarose stamp[J]. Electrochimica Acta, 2008, 53(18): 5628-5631.
[16] Zhang L, Ma X Z, Zhuang J L. Microfabrication of a diffractive microlens array on n-GaAs by an efficient electrochemical method [J]. Advanced Materials, 2007, 19(22): 3912-3918.
[17] Tang J, Zhang L, Tian X C. Micromaching on copper and nickel by electrochemical wet stamping[J]. Journal of Micromechanics and Microengineering, 2010, 20(11): 115030-115035.
[18] Sekine S, Nakanishi S, Miyake T, et al. Electrodes combined with an agarose stamp for addressable micropatterning[J]. Langmuir, 2010, 26(13): 11526-11529.
[19] Cui X T, Zhou D D. Poly(3,4-ethylenedioxythiophene) for chronic neural stimulation[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2007, 15(4): 502-508.
文章导航

/