欢迎访问《电化学(中英文)》期刊官方网站,今天是
锂离子和燃料电池近期研究专辑(厦门大学 董全峰教授主编)

碱性聚合物电解质燃料电池电极疏水性对性能的影响

  • 谭力盛 ,
  • 潘婧 ,
  • 李瑶 ,
  • 庄林 ,
  • 陆君涛
展开
  • 武汉大学 化学电源材料与技术湖北省重点实验室,化学与分子科学学院,湖北 武汉 430072

收稿日期: 2012-10-12

  修回日期: 2013-01-11

  网络出版日期: 2013-01-16

基金资助

国家重点基础研究发展计划(No. 2012CB932800,No. 2012CB215500)、国家高技术研究发展计划(No. 2011AA050705)和国家自然科学基金(No. 20933004,No. 21125312)资助

Influence of Electrode Hydrophobicity on Performance of Alkaline Polymer Electrolyte Fuel Cells

  • TAN Li-Sheng ,
  • PAN Jing ,
  • LI Yao ,
  • ZHUANG Lin ,
  • LU Jun-Tao
Expand
  • College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China

Received date: 2012-10-12

  Revised date: 2013-01-11

  Online published: 2013-01-16

摘要

本文报道H2-O2型碱性聚合物电解质燃料电池(APEFC)电极疏水性对放电性能的影响. 以季铵化聚砜(QAPS)或自交联型季铵化聚砜(xQAPS)碱性聚电解质(APE)作为隔膜和电极中的电解质(Ionomer)、聚四氟乙烯(PTFE)作为疏水添加剂调控催化层疏水性. 结果表明,阳极催化层疏水性的增强有利于提升电池放电性能,而阴极催化层疏水性适中时电池性能最优. 采用疏水性较强的xQAPS作为电解质并在阳极催化层中添加适量PTFE疏水剂,在60 oC和100%相对湿度的条件下,280 mA·cm-2电流密度时,电池最高功率密度达132 mW·cm-2.

本文引用格式

谭力盛 , 潘婧 , 李瑶 , 庄林 , 陆君涛 . 碱性聚合物电解质燃料电池电极疏水性对性能的影响[J]. 电化学, 2013 , 19(3) : 199 -203 . DOI: 10.61558/2993-074X.2949

Abstract

In the present work, we study the influence of the electrode hydrophobicity on the performance of alkaline polymer electrolyte fuel cells (APEFCs). QAPS or xQAPS is employed as the membrane and the ionomer, while PTFE is used as a hydrophobic additive in order to adjust the electrode hydrophobicity. We find that enhancing the hydrophobicity of anode can promote the performance of APEFCs, while a moderate hydrophobicity of cathode is required to achieve optimal performance. By using xQAPS as the electrolyte and adding some PTFE in the anode, a peak power density of 132 mW·cm-2 can be obtained at a current density of 280 mA·cm-2 when the APEFC single cell is operated under 100% RH at 60 ºC.

参考文献

[1] Steele B C H, Heinzel A. Materials for fuel-cell technologies[J]. Nature, 2001, 414(6861): 345-352.
[2] Borup R, Meyers J, Pivovar B, et al. Scientific aspects of polymer electrolyte fuel cell durability and degradation[J]. Chemical Reviews, 2007, 107(10): 3904-3951.
[3] Pan J, Chen C, Zhuang L, et al. Designing advanced alkaline polymer electrolytes for fuel cell applications[J]. Accounts of Chemical Research, 2012, 45(3): 473-481.
[4] Pan J, Chen C, Zhuang L, et al. Structure-performance relationship study of alkaline polymer electrolytes[J]. ECS Transactions, 2011, 41(1): 69-72.
[5] Tang D P, Pan J, Lu S F, et al. Alkaline polymer electrolyte fuel cells: Principle, challenges, and recent progress[J]. Science China Chemistry, 2010, 53(2): 357-364.
[6] Lu S F, Pan J, Huang A B, et al. Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts[J]. Proceedings of the National Academy of Sciences USA, 2008, 105(52): 20611-20614.
[7] Varcoe J R, Slade R C T. Prospects for alkaline anion-exchange membrane in low temperature fuel cells[J]. Fuel cells, 2005, 5(2): 187-200.
[8] Merle G, Wessling M, Nijmeijer K. Anion exchange membranes for alkaline fuel cells: A review[J]. Journal of Membrane Science, 2011, 377(1/2): 1-35.
[9] Wang Y, Li L, Hu L, et al. A feasibility analysis for alkaline membrane direct methanol fuel cell: Thermodynamic disadvantages versus kinetic advantages[J]. Electrochemistry Communications, 2003, 5(8): 662-666.
[10] Pan J, Lu S F, Li Y, et al. High-performance alkaline polymer electrolyte for fuel cell applications[J]. Advanced Functional Materials, 2010, 20(2): 312-319.
[11] Pan J, Li Y, Zhuang L, et al. Self-crosslinked alkaline polymer electrolyte exceptionally stable at 90 oC[J]. Chemical Communications, 2010, 46(45): 8597-8599.
[12] Pan J, Tan L S, Zhuang L, et al. A study of the preparation and performance of self-crosslinking alkaline polymer electrolytes workable at 90 °C[J]. Science China Chemistry, 2011, 41(12): 1848-1856.
文章导航

/