欢迎访问《电化学(中英文)》期刊官方网站,今天是
电化学材料基础与表界面研究专辑(中国科学院化学研究所 万立骏院士主编)

Na2CO3对TiO2纳米管电极表面光电化学水分解反应的催化作用研究

  • 孔德生 ,
  • 王静 ,
  • 张学迪 ,
  • 赵曦 ,
  • 王超 ,
  • 冯媛媛 ,
  • 李文娟
展开
  • 曲阜师范大学化学与化工学院,山东 曲阜 273165

收稿日期: 2012-06-04

  修回日期: 2012-06-30

  网络出版日期: 2012-07-05

基金资助

山东省自然科学基金(No. ZR2010EM026)和山东省优秀中青年科学家奖励基金(No. BS2011NJ009)资助

Sodium Carbonate Catalyzed Photoelectrochemical Water Splitting over TiO2 Nanotubes Photoanode

  • KONG De-Sheng ,
  • WANG Jing ,
  • ZHANG Xue-Di ,
  • ZHAO Xi ,
  • WANG Chao ,
  • FENG Yuan-Yuan ,
  • LI Wen-Juan
Expand
  • Department of Chemistry,Qufu Normal University,Qufu 273165,Shandong,China

Received date: 2012-06-04

  Revised date: 2012-06-30

  Online published: 2012-07-05

摘要

光生载流子在半导体/溶液界面处发生的表面复合过程,是制约半导体光电极体系光-电转化效率提高的关键因素之一. 本文利用光电流测量和交流阻抗等技术,初步研究了Na2CO3对TiO2纳米管电极表面光电化学水分解反应的催化作用,并对“TiO2/溶液”界面处与阳极析氧有关的光生电荷传输过程及特点进行了探讨. 结果表明,在0.5 mol•L-1 NaClO4溶液中加入少量的Na2CO3(1 mmol•L-1),能够显著促进光生空穴穿过TiO2/溶液界面向溶液中的传输,有效地抑制光生载流子的表面复合过程,从而相应地增大外电路的光电流,提高TiO2光电极体系的光-电转化效率.

本文引用格式

孔德生 , 王静 , 张学迪 , 赵曦 , 王超 , 冯媛媛 , 李文娟 . Na2CO3对TiO2纳米管电极表面光电化学水分解反应的催化作用研究[J]. 电化学, 2013 , 19(1) : 71 -78 . DOI: 10.61558/2993-074X.2100

Abstract

Surface recombination of the photogenerated electron-hole pairs at semiconductor/electrolyte interface is one of the most essential reasons responsible for lowering photoconversion efficiency (Φ) of light to chemical energy for photoelectrochemical (PEC) water splitting reaction. In this paper,the catalytic effect of sodium carbonate on the oxygen evolution reaction (OER) over TiO2 nanotubes photoanode during PEC water splitting was investigated by performing photocurrent and ac impedance measurements. It was demonstrated that the addiction of 1 mmol•L-1 Na2CO3 in 0.5 mol•L-1 NaClO4 electrolyte can effectively improve the charge transfer properties for the photogenerated holes across TiO2/electrolyte interface and inhibit the recombination of photogenerated carriers at this interface. As a result,both the measured photocurrent was increased and the photoconversion efficiency was enhanced.

参考文献

[1] Bockris J O?M. The origin of ideas on a Hydrogen Economy and its solution to the decay of the environment[J]. International Journal of Hydrogen Energy, 2002, 27(7/8): 731-740.
[2] Guo L J, Zhao L, Jing D W, et al. Solar hydrogen production and its development in China[J]. Energy, 2009, 34(9): 1073-1090.
[3] Zhang X D(张学迪), Wang J(王静), Zhao X(赵曦), et al. Solar-hydrogen production by photoelectrochemical water splitting using TiO2 nanotube-based photoanodes[C]// The 16th National Conference on Electrochemistry, October 13-17, 2011, Chong Qing University, Chongqing, China. 2011: F-053.
[4] Kitano M, Tsujimaru K, Anpo M. Hydrogen production using highly active titanium oxide-based photocatalysts[J]. Topics in Catalysis, 2008, 49: 4-17.
[5] Harrison K, Levene J I. Chapter 3. Electrolysis of water[M]// Rajeshwar K, McConnell R, Licht S, Edt. Solar hydrogen generation: Toward a renewable energy future. New York: Springer, 2008.
[6] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238: 37-38.
[7] Chen X, Shen S, Guo L J, et al. Semiconductor-based photocatalytic hydrogen generation[J]. Chemical Reviews, 2010, 110(11): 6503-6570.
[8] Murphy A B, Barnes P R F, Randeniya L K, et al. Efficiency of solarwater splitting using semiconductor electrodes[J]. International Journal of Hydrogen Energy, 2006, 31: 1999-2017.
[9] Van de Krol R, Schoonman J. Chapter 6. Photo-electrochemical production of hydrogen[M]// Hanjali? K, Krol R van de, Leki? A, Edt. Sustainable energy technologies: Options and prospects. Dordrecht: Springer, 2008.
[10] Peter L M, Li J, Peat R. Surface recombination at semiconductor electrodes: Part I. Transient and steady-state photocurrents[J]. Journal of Electroanalytical Chemistry, 1984, 165(1/2): 29-40.
[11] Li J, Peat R, Peter L M. Surface recombination at semiconductor electrodes: Part II. Photoinduced “near-surface” recombination centres in p-GaP[J]. Journal of Electroanalytical Chemistry, 1984, 165(1/2): 41-59.
[12] Cowan A J, Tang J, Leng W, et al. Water splitting by nanocrystalline TiO2 in a complete photoelectrochemical cell exhibits efficiencies limited by charge recombination[J]. The Journal of Physical Chemistry C, 2010, 114(9): 4208-4214.
[13] Sayama K, Arakawa H. Significant effect of carbonate addition on stoichiometric photodecomposition of liquid water into hydrogen and oxygen from platinum-titanium(IV) oxide suspension[J]. Journal of the Chemical Society, Chemical Communications, 1992, (2): 150-152.
[14] Sayama K, Arakawa H. Effect of carbonate salt addition on the photocatalytic decomposition of liquid water over Pt-TiO2 catalyst[J]. Journal of the Chemical Society, Faraday Transactions, 1997, 93 (8): 1647-1654.
[15] Arakawa H, Sayama K. Solar hydrogen production: Significant effect of Na2CO3 addition on water splitting using simple oxide semiconductor photocatalysts[J]. Catalysis Surveys from Japan, 2000, 4: 75-80.
[16] Zhu J, Z?ch M. Nanostructured materials for photocatalytic hydrogen production[J]. Current Opinion in Colloid & Interface Science, 2009, 14: 260-269.
[17] Grimes C A, Mor G K. TiO2 Nanotube arrays: Synthesis, properties, and applications[M]. New York: Springer Science + Business Media, 2009: Chapter 1.
[18] Kong D S, Chen S H, Wang C, et al. A study of the passive films on Cr by capacitance measurement[J]. Corrosion Science, 2003, 45 (4): 747-758.
[19] Milczarek G, Kasuya A, Mamykin S, et al. Optimization of a two-compartment photoelectrochemical cell for solar hydrogen production[J]. International Journal of Hydrogen Energy, 2003, 28: 919-926.
[20] Shiga A, Tsujiko A, Yae S, et al. High photocurrent quantum yields in short wavelengths for nanocrystalline anatase-type TiO2 film electrodes compared with those for rutile-type[J]. Bulletin of the Chemical Society of Japan, 1998, 71(9): 2119-2125.
[21] Shaban Y A, Khan S U M. Surface grooved visible light active carbon modified (CM)-n-TiO2 thin films for efficient photoelectrochemical splitting of water[J]. Chemical Physics, 2007, 339: 73-85.
[22] Prter L M. Dynamic aspects of semiconductor photoelectrochemistry[J]. Chemical Reviews, 1990, 90 (5): 753-769.
[23] a) G?rtner W W. Depletion-layer photoeffects in semiconductors[J]. Physical Review, 1959, 116(1): 84-87; b) Butler M A. Photoelectrolysis and physical properties of the semiconducting electrode WO3[J]. Journal of Applied Physics, 1977, 48(5): 1914-1920.
[24] Kong D S, Wu J X. An electrochemical study on the anodic oxygen evolution on oxide film covered titanium[J]. Journal of The Electrochemical Society, 2008, 155(1): C32-C40.
[25] Kong D S. Anion-incorporation model (AIM) for interpreting the interfacial physical origin of the faradaic pseudo-capacitance observed on anodized valve metals—with anodized titanium in fluoride-containing perchloric acid as an example[J]. Langmuir, 2010, 26(7): 4880-4891.
[26] Kong D S (孔德生), Liu H Y (刘海燕), Lv W H (吕文华), et al. Electrochemical studies on the ionic charge transfer properties of the cxygen vacancy defects in the oxide films formed on titanium[J]. Journal of Electrochemistry (电化学), 2009, 15(3): 320-325.
[27] Morrison S R. Electrochemistry at semiconductor and oxidized metal electrodes[M]. Wu H H (吴辉煌), Trs. Beijing: Science Press (科学出版社), 1988: Chpter 2, Chapter 4.
[28] Nakato Y, Tsumura A, Tsumura H. The concept of “sueface-trapped hole” as an intermediate of anodic reaction of a gallium phosphide semiconductor electrode[J]. Chemistry Letters, 1981, 127-130.
文章导航

/