[1] Bockris J O?M. The origin of ideas on a Hydrogen Economy and its solution to the decay of the environment[J]. International Journal of Hydrogen Energy, 2002, 27(7/8): 731-740.[2] Guo L J, Zhao L, Jing D W, et al. Solar hydrogen production and its development in China[J]. Energy, 2009, 34(9): 1073-1090.[3] Zhang X D(张学迪), Wang J(王静), Zhao X(赵曦), et al. Solar-hydrogen production by photoelectrochemical water splitting using TiO2 nanotube-based photoanodes[C]// The 16th National Conference on Electrochemistry, October 13-17, 2011, Chong Qing University, Chongqing, China. 2011: F-053.[4] Kitano M, Tsujimaru K, Anpo M. Hydrogen production using highly active titanium oxide-based photocatalysts[J]. Topics in Catalysis, 2008, 49: 4-17.[5] Harrison K, Levene J I. Chapter 3. Electrolysis of water[M]// Rajeshwar K, McConnell R, Licht S, Edt. Solar hydrogen generation: Toward a renewable energy future. New York: Springer, 2008.[6] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238: 37-38.[7] Chen X, Shen S, Guo L J, et al. Semiconductor-based photocatalytic hydrogen generation[J]. Chemical Reviews, 2010, 110(11): 6503-6570.[8] Murphy A B, Barnes P R F, Randeniya L K, et al. Efficiency of solarwater splitting using semiconductor electrodes[J]. International Journal of Hydrogen Energy, 2006, 31: 1999-2017.[9] Van de Krol R, Schoonman J. Chapter 6. Photo-electrochemical production of hydrogen[M]// Hanjali? K, Krol R van de, Leki? A, Edt. Sustainable energy technologies: Options and prospects. Dordrecht: Springer, 2008.[10] Peter L M, Li J, Peat R. Surface recombination at semiconductor electrodes: Part I. Transient and steady-state photocurrents[J]. Journal of Electroanalytical Chemistry, 1984, 165(1/2): 29-40.[11] Li J, Peat R, Peter L M. Surface recombination at semiconductor electrodes: Part II. Photoinduced “near-surface” recombination centres in p-GaP[J]. Journal of Electroanalytical Chemistry, 1984, 165(1/2): 41-59.[12] Cowan A J, Tang J, Leng W, et al. Water splitting by nanocrystalline TiO2 in a complete photoelectrochemical cell exhibits efficiencies limited by charge recombination[J]. The Journal of Physical Chemistry C, 2010, 114(9): 4208-4214.[13] Sayama K, Arakawa H. Significant effect of carbonate addition on stoichiometric photodecomposition of liquid water into hydrogen and oxygen from platinum-titanium(IV) oxide suspension[J]. Journal of the Chemical Society, Chemical Communications, 1992, (2): 150-152.[14] Sayama K, Arakawa H. Effect of carbonate salt addition on the photocatalytic decomposition of liquid water over Pt-TiO2 catalyst[J]. Journal of the Chemical Society, Faraday Transactions, 1997, 93 (8): 1647-1654.[15] Arakawa H, Sayama K. Solar hydrogen production: Significant effect of Na2CO3 addition on water splitting using simple oxide semiconductor photocatalysts[J]. Catalysis Surveys from Japan, 2000, 4: 75-80.[16] Zhu J, Z?ch M. Nanostructured materials for photocatalytic hydrogen production[J]. Current Opinion in Colloid & Interface Science, 2009, 14: 260-269.[17] Grimes C A, Mor G K. TiO2 Nanotube arrays: Synthesis, properties, and applications[M]. New York: Springer Science + Business Media, 2009: Chapter 1.[18] Kong D S, Chen S H, Wang C, et al. A study of the passive films on Cr by capacitance measurement[J]. Corrosion Science, 2003, 45 (4): 747-758.[19] Milczarek G, Kasuya A, Mamykin S, et al. Optimization of a two-compartment photoelectrochemical cell for solar hydrogen production[J]. International Journal of Hydrogen Energy, 2003, 28: 919-926.[20] Shiga A, Tsujiko A, Yae S, et al. High photocurrent quantum yields in short wavelengths for nanocrystalline anatase-type TiO2 film electrodes compared with those for rutile-type[J]. Bulletin of the Chemical Society of Japan, 1998, 71(9): 2119-2125.[21] Shaban Y A, Khan S U M. Surface grooved visible light active carbon modified (CM)-n-TiO2 thin films for efficient photoelectrochemical splitting of water[J]. Chemical Physics, 2007, 339: 73-85.[22] Prter L M. Dynamic aspects of semiconductor photoelectrochemistry[J]. Chemical Reviews, 1990, 90 (5): 753-769.[23] a) G?rtner W W. Depletion-layer photoeffects in semiconductors[J]. Physical Review, 1959, 116(1): 84-87; b) Butler M A. Photoelectrolysis and physical properties of the semiconducting electrode WO3[J]. Journal of Applied Physics, 1977, 48(5): 1914-1920.[24] Kong D S, Wu J X. An electrochemical study on the anodic oxygen evolution on oxide film covered titanium[J]. Journal of The Electrochemical Society, 2008, 155(1): C32-C40.[25] Kong D S. Anion-incorporation model (AIM) for interpreting the interfacial physical origin of the faradaic pseudo-capacitance observed on anodized valve metals—with anodized titanium in fluoride-containing perchloric acid as an example[J]. Langmuir, 2010, 26(7): 4880-4891.[26] Kong D S (孔德生), Liu H Y (刘海燕), Lv W H (吕文华), et al. Electrochemical studies on the ionic charge transfer properties of the cxygen vacancy defects in the oxide films formed on titanium[J]. Journal of Electrochemistry (电化学), 2009, 15(3): 320-325.[27] Morrison S R. Electrochemistry at semiconductor and oxidized metal electrodes[M]. Wu H H (吴辉煌), Trs. Beijing: Science Press (科学出版社), 1988: Chpter 2, Chapter 4.[28] Nakato Y, Tsumura A, Tsumura H. The concept of “sueface-trapped hole” as an intermediate of anodic reaction of a gallium phosphide semiconductor electrode[J]. Chemistry Letters, 1981, 127-130. |