欢迎访问《电化学(中英文)》期刊官方网站,今天是
电化学材料基础与表界面研究专辑(中国科学院化学研究所 万立骏院士主编)

甘氨酸修饰的Pt(111)电极上的氧还原

  • 李明芳 ,
  • 康婧 ,
  • 廖玲文 ,
  • 陈艳霞 ,
  • 叶深
展开
  • 1.中国科学技术大学 合肥微尺度物质科学国家实验室,化学与材料科学学院化学物理系,安徽 合肥 230026; 2.北海道大学催化化学研究中心,日本 札幌

收稿日期: 2012-06-04

  修回日期: 2012-06-30

  网络出版日期: 2012-07-05

基金资助

国家自然基金面上项目(No. 21073176)资助

Oxygen Reduction Reaction on Glycin Modified Pt(111) Electrode

  • LI Ming-Fang ,
  • KANG Jing ,
  • LIAO Ling-Wen ,
  • CHEN Yan-Xia ,
  • YE Shen
Expand
  • 1. Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China; 2. Catalysis Research Center, Hokkaido University, Sapporo 001-0021, Japan

Received date: 2012-06-04

  Revised date: 2012-06-30

  Online published: 2012-07-05

摘要

利用单晶旋转圆盘电极技术(Hanging Meniscus Rotating Disk Electrode, HMRD)在硫酸和高氯酸溶液中分别研究了甘氨酸修饰的Pt(111)电极表面氧分子的电催化还原反应. 实验发现:在硫酸溶液中,经甘氨酸修饰的Pt(111)电极表面的氧还原活性明显提高,其中氧还原的半波电位与Pt(111)电极的相比正移约0.1 V,而在高氯酸溶液中,甘氨酸修饰的Pt(111)电极的活性几乎没有发生变化. 该实验结果表明:甘氨酸修饰的Pt(111)电极一方面抑制了SO42-在电极表面的吸附,另一方面又能在电极表面提供相邻的空位供氧分子吸附. 通过与文献中报道的CN-修饰的Pt(111)电极上的氧还原结果的对比,可以推测甘氨酸修饰的Pt(111)电极表面氧还原活性提高是由于甘氨酸在Pt(111)表面可能先被氧化成CN-后吸附在电极表面,进而促进了氧分子的电催化还原反应.

本文引用格式

李明芳 , 康婧 , 廖玲文 , 陈艳霞 , 叶深 . 甘氨酸修饰的Pt(111)电极上的氧还原[J]. 电化学, 2013 , 19(1) : 37 -42 . DOI: 10.61558/2993-074X.2096

Abstract

Oxygen reduction reaction (ORR) on glycin (NH2CH2COOH) modified Pt(111) electrode has been investigated using hanging meniscus rotating disk electrode system (HMRD) in 0.05 mol•L-1 H2SO4 and 0.1 mol•L-1 HClO4 solutions, respectively. Cyclic voltammograms of the glycin modified Pt (111) electrode measured in 0.05 mol•L-1 H2SO4 solution similar to that of CN- modified Pt(111) electrodes, demonstrating that sulfate adsorption is strongly inhibited at the glycin modified Pt(111). From the polarization curve of ORR recorded in 0.05 mol•L-1 H2SO4  solution, it is found that the ORR activity at the glycin modified Pt (111) is greatly enhanced with the half wave potential (E1/2) of ORR being shifted ca. 0.1 V positively, which is close to the activity of ORR at the unmodified Pt(111) in 0.1 mol•L-1 HClO4 solution. The improved ORR activity is explained by geometric effect due to the formation of well organized CN- adlayer at Pt(111) from the oxidative decomposition of glycin, which effectively inhibits the adsorption of sulfate anions.

参考文献

[1] Carrette L, Friedrich K A, Stimming U. Fuel cells: Principles, types, fuels, and applications[J].Chemphyschem, 2000, 1(4): 162-193.
[2] Kinoshita K. Electrochemical oxygen technology[M]. New York: Wiley, 1992.
[3] Ross P N. Oxygen reduction reaction on the single crystal electrodes[M]//Vielstich W, Lamn A, Gasteiger H A (Eds.). Handbook of Fuel Cells: Fundamentals, Technology, Applications. New York: Wiley, 2003, 2: 465-480.
[4] Gottesfeld S. Electrocatalysis of Oxygen Reduction in Polymer Electrolyte Fuel Cells: A Brief History and a Critical Examination of Present Theory and Diagnostics[M]//Koper M T M (Eds.). Fuel Cell Catalysis: A Surface Science Approach. Chichester: Wiley&Sons, 2009: 1-30.
[5] Strmcnik D, Escudero-Escribano M, Kodama K, et al. Enhanced electrocatalysis of the oxygen reduction reaction based on patterning of platinum surfaces with cyanide[J]. Nature Chemistry, 2010, 2(10): 880-885.
[6] Clavilier J, Armand D, Sun S G, et al. Electrochemical adsorption behavior of platinum stepped surfaces in sulfuric-acid-solutions[J]. Journal of Electroanalytical Chemistry, 1986, 205(1/2): 267-277.
[7] Clavilier J, Faure R, Guinet G, et al. Preparation of mono-crystalline Pt microelectrodes and electrochemical study of the plane surfaces cut in the direction of the (111) and (110) planes[J]. Journal of Electroanalytical Chemistry, 1980, 107(1): 205-209.
[8] Clavilier J. Role of anion on the electrochemical-behavior of a (111) platinum surface-unusual splitting of the voltammogram in the hydrogen region[J]. Journal of Electroanalytical Chemistry, 1980, 107(1): 211-216.
[9] Markovic N M, Adzic R R, Cahan B D, et al. Structural effects in electrocatalysis: Oxygen reduction on platinum low index single-crystal surfaces in perchloric acid solutions[J]. Journal of Electroanalytical Chemistry, 1994, 377(1/2): 249-259.
[10] Markovic N M, Gasteiger H, Ross P N. Kinetics of oxygen reduction on Pt(hkl) electrodes: Implications for the crystallite size effect with supported Pt electrocatalysts[J]. Journal of The Electrochemical Society, 1997, 144(5): 1591-1597.
[11] Wang J X, Markovic N M, Adzic R R. Kinetic analysis of oxygen reduction on Pt(111) in acid solutions: Intrinsic kinetic parameters and anion adsorption effects[J]. The Journal of Physical Chemistry B, 2004, 108(13): 4127-4133.
[12] Markovic N M, Gasteiger H A, Ross P N. Oxygen reduction on platinum low index single crystal surfaces in sulfuric acid solution-rotating ring-Pt (HKL) disk studies[J]. Journal of Physical Chemistry, 1995, 99(11): 3411-3415.
[13] Villullas H M, Teijelo M L. The hanging meniscus rotating-disk (HMRD) .1. Dependence of hydroynamic behavior on experimental variables[J]. Journal of Electroanalytical Chemistry, 1995, 384(1/2): 25-30.
[14] Villullas H M,Teijelo M L. The hanging meniscus rotating-disk(HMRD). 2 Application to simple charge transfer reaction kinetics [J]. Journal of Electroanalytical Chemistry, 1995, 385(1): 39-44.
[15] Hsueh K L, Gonzalez E R, Srinivasan S. Electrolyte effects on oxygen reduction kineticss at platinum-a rotating-ring disk electrode analysis [J]. Electrochimica Acta, 1983, 28(5): 691-697.
[16] Huerta F, Morallon E, Cases F, et al. Electrochemical behaviour of amino acids on Pt(h,k,l): A voltammetric and in situ FTIR study .1. Glycine on Pt(111) [J]. Journal of Electroanalytical Chemistry, 1997, 421(1/2): 179-185.
文章导航

/