欢迎访问《电化学(中英文)》期刊官方网站,今天是
环境电化学近期研究专辑(吉林大学 林海波教授主编)

电驱动下的环境污染物厌氧生物转化—电子转移原理和应用实例

  • 冯春华 ,
  • 谢道海 ,
  • 庞韵梦 ,
  • 韩涛 ,
  • 韦朝海
展开
  • 华南理工大学 环境科学与工程学院,工业聚集区污染控制与生态修复教育部重点室,污染控制与生态修复广东省普通高等学校重点实验室,广东 广州 510006

收稿日期: 2012-12-25

  修回日期: 2013-03-20

  网络出版日期: 2013-03-20

基金资助

国家自然科学基金项目(No. 21177042,No. 21037001),广东省自然科学基金项目(No. S2011010002231)和华南理工大学中央高校基本业务经费(No. 2012ZZ0048)资助

Anaerobic Biotransformation of Environmental Pollutants Stimulated by Electric Field: Electron-Transfer Mechanisms and Application Examples

  • FENG Chun-Hua ,
  • XIE Dao-Hai ,
  • PANG Yun-Meng ,
  • HAN Tao ,
  • WEI Chao-Hai
Expand
  • College of Environmental Science and Engineering, the Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters of Ministry of Education, the Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, South China University of Technology, Guangzhou 510006, China

Received date: 2012-12-25

  Revised date: 2013-03-20

  Online published: 2013-03-20

摘要

厌氧环境下一些微生物能够接受来自于电极的电子并将电子传递至环境污染物,这使得电驱动下生物还原技术在可持续性废水处理以及生物修复方面受到越来越多关注. 此体系中,阴极电子传递被认为是影响环境污染物厌氧转化可行性和效率的制约因素. 文中首先评述可能的电子传递原理,包括水解氢气介导的间接电子传递、人工合成电子穿梭体或者细菌分泌电子穿梭体介导的间接电子传递、以及电极与细菌之间的直接电子传递等途径. 相比间接电子传递,直接电子传递避免了将电子传递给没有起作用的介体及没有和电极接触的浮游微生物,因而更加节能. 另外,列举了自养反硝化、生物还原脱氯、重金属生物还原、CO2生物还原以及硫酸盐生物还原等应用实例. 最后,提出了此领域研究发展亟需解决的两个重要问题,包括阴极生物膜的培养以及电子从电极转至微生物内在机理的解析.

本文引用格式

冯春华 , 谢道海 , 庞韵梦 , 韩涛 , 韦朝海 . 电驱动下的环境污染物厌氧生物转化—电子转移原理和应用实例[J]. 电化学, 2013 , 19(5) : 444 -453 . DOI: 10.61558/2993-074X.2135

Abstract

The ability of some microorganisms to accept electrons from an electrode for the reduction of terminal electron acceptors in anaerobic environments has attracted growing interest on the electric field-stimulated biological reduction technology, which may open new possibility for the sustainable wastewater treatment and bioremediation in the field of environmental engineering. Here, we reviewed the extracellular electron transfer mechanism which is thought to play a key role in determining the feasibility and efficiency for the anaerobic biotransformation of environmental pollutants. Possible mechanisms that may be involved in bioelectrochemical reactors (BERs) with biocathodes include indirect electron transfer via hydrogen generated from water electrolysis or via a soluble mediator that can be artificial or secreted from bacteria, and direct transfer from the cathode to the microorganism. Direct electron transfer has many advantages over indirect electron transfer because it avoids the loss of electrons to unused mediators and planktonic cells, and thus allows significant reduction in power requirements. In addition, potential application examples of anaerobic biotransformation of environmental pollutants, known as autotrophic denitrification, microbial reductive dechlorination, heavy-metal bioreduction, CO2 bioreduction, sulfate bioreduction stimulated by an applied electric field were also reviewed. Finally, we proposed that more efforts should be made on developing new strategies for growing cathode biofilms and further disclosing biochemical mechanisms for the cathode extracellular electron transfer, in order to achieve the promising applications of this biotechnology.

参考文献

[1] Angenent L T, Karim K, Al-Dahhan M H, et al. Production of bioenergy and biochemicals from industrial and agricultural wastewater[J]. Trends in Biotechnology, 2004, 22(9): 475-485.
[2] Rabaey K, Verstraete W. Microbial fuel cells: Novel biotechnology for energy generation[J]. Trends in Biotechnology, 2005, 23(6): 291-298.
[3] Geelhoed J S, Hamelers H V M, Stams A J M. Eletricity-mediated biological hydrogen production[J]. Current Opinion in Microbiology, 2010, 13(3): 307-315.
[4] Lu L, Xing D, Xie T, et al. Hydrogen production from proteins via electrohydrogenesis in microbial electrolysis cells[J]. Biosensors and Bioelectronics, 2010, 25(12): 2690-2695.
[5] Beschkov V, Velizarow S, Agathos S N, et al. Bacterial denitrification of waste water stimulated by constant electric field[J]. Biochemical Engineering Journal, 2004, 17(2): 141-145.
[6] Ghafari S, Hasan M, Aroua M K. Bio-eletrochemical removal of nitrate from water and wastewater-A review[J]. Bioresource Technology, 2008, 99(10): 3965-3974.
[7] Rinaldi A, Mecheri B, Garavaglia V, et al. Engineering materials and biology to boost performance of microbial fuel cells: a critical review[J]. Energy and Environmental Science, 2008, 1(4): 417-429.
[8] Lovley D R, Nevin K P. A shift in the current: New applications and concepts for microbe-electrode electron exchange[J]. Current Opinion in Microbiology, 2011, 22(3): 441-446.
[9] Sadoff H L, Halvorson H O, Finn R K. Electrolysis as a means of aerating submerged cultures of microorganisms[J]. Applied Microbiology, 1956, 4 (4): 164-170.
[10] He Z, Angenent L T. Application of bacterial biocathodes in microbial fuel cells[J]. Electroanalysis, 2006, 18(19): 2009-2015.
[11] Wang G (王刚), Huang L P(黄丽萍), Zhang Y F(张翼峰). Study and application of biological cathode in microbial fuel cells[J]. Environmental Science and Technology(环境科学与技术), 2008, 31(12): 101-103.
[12] Chen L X(陈立香), Xiao Y(肖勇), Zhao F(赵峰). Biocathodes in microbial fuel cells[J]. Progress in Chemistry(化学进展), 2012, 24(1): 157-162.
[13] Thrash J C, Coates J D. Review: Direct and indirect electrical stimulation of microbial metabolism[J]. Environmental Science and Technology, 2008, 42(11): 3921-3931.
[14] Aulenta F, Catervi A, Majone M, et al. Electron transfer from a solid-state electrode assisted by methyl viologen sustains ef?cient microbial reductive dechlorination of TCE[J]. Environmental Science and Technology. 2007, 41 (7): 2554-2559.
[15] Thrash J C, Trump J I V, Weber K A, et al. Electrochemical stimulation of microbial perchlorate reduction[J]. Environmental Science and Technology, 2007, 41 (5): 1740-1746.
[16] Park D H, Zeikus J G. Utilization of electrically reduced neutral red by Actinobacillus succinogenes: Physiological function of neutral red inmembrane-driven fumarate reduction and energy conservation[J]. Journal of Bacteriology, 1999, 181 (8), 2403-2410.
[17] Lovley D R. Powering microbes with electricity: Direct electron transfer from electrodes to microbes[J]. Environmental Microbiology Reports, 2011, 3(1): 27-35.
[18] Rabaey K, Boon N, Verstraete W, et al. Microbial phenazine production enhances electron transfer in biofuel cells[J]. Environmental Science and Technology, 2005, 39(9): 3401-3408.
[19] Marsili E, Baron D B, Shikhare I D, et al. Shewanella secretes ?avins that mediate extracellular electron transfer[J]. Proceedings of the National Academy of Sciences, 2008, 105(10): 3968-3973.
[20] Freguia S, Tsujimura S, Kano K. Electron transfer pathways in microbial oxygen biocathodes[J]. Electrochimica Acta , 2010, 55(3): 813-818.
[21] Aulenta F, Canosa A, Reale P, et al. Microbial reductive dechlorination of trichloroethene to ethene with electrodes serving as electron donors without the external addition of redox mediators[J]. Biotechnology and Bioengineering, 2009, 103(1): 85-91.
[22] Gregory K B, Bond D R, Lovley D R. Graphite electrodes as electron donors for anaerobic respiration[J]. Environmental Microbiology, 2004, 6(6): 596-604.
[23] Rosenbauma M, Aulenta F, Villano M, et al. Cathodes as electron donors for microbial metabolism: Which extracellular electron transfer mechanisms are involved?[J]. Bioresource Technology, 2011, 102(1): 324-333.
[24] Sakakibara Y, Kuroda M. Electric prompting and control of denitrification[J]. Biotechnology and Bioengineering, 1993, 42(4): 535-537.
[25] Sakakibara Y, Flora J R V, Suidan M T, et al. Modeling of electrochemically-activated denitrifying biofilms[J]. Water Research, 1994, 28(5): 1077-1086.
[26] Sakakibara Y, Araki K, Watanabe T, et al. The denitrification and neutralization performance of an electrochemically activated biofilm reactor used to treat nitrate-contaminated groundwater[J]. Water Science and Technology, 1997, 36(1): 61-68.
[27] Kuroda M, Watanabe T, Umedu Y. Simultaneous COD removal and denitrification of wastewater by bio-electro reactors[J]. Water Science and Technology, 1997, 35(8): 161-168.
[28] Islam S, Suidan M T. Electrolytic denitrification: Long term performance and effects of current intensity[J]. Water Research, 1998, 32(2): 528-536.
[29] Sakakibara Y, Kusaka J. In situ autotrophic denitrification using electrode under oligotrophic conditions[C]. Proceedings of 5th International In Situ and On-site Bioremediation Symposium, San Diego, CA, 1999, 4: 73-78.
[30] Kim Y H, Park Y J, Song S H, et al. Nitrate removal without carbon source feeding by permeabilized Ochrobactrum anthropi SY509 using an electrochemical reactor[J]. Enzyme and Microbial Technology, 2007, 41(5): 663-668.
[31] Clauwaert P, Rabaey K, Aelterman P, et al. Biological denitri?cation in microbial fuel cells[J]. Environmental Science and Technology, 2007, 41(9): 3354-3360.
[32] Virdis B, Rabaey K, Yuan Z G, et al. Electron ?uxes in a microbial fuel cell performing carbon and nitrogen removal[J]. Environmental Science and Technology, 43(13): 5144-5149.
[33] Virdis B, Rabaey K, Yuan Z, et al. Microbial fuel cells for simultaneous carbon and nitrogen removal[J]. Water Research, 2008, 42(12): 3013-3024.
[34] Puig S, Coma M, Desloover J, et al. Autotrophic Denitrification in microbial fuel cells treating low ionic strength waters[J]. Environmental Science and Technology, 2012, 46(4): 2309-2315.
[35] Loffler F E, Edwards E A. Harnessing microbial activities for environmental cleanup[J]. Current Opinion in Biotechnology, 2006, 17(3): 274-284.
[36] Aulenta F, Catervi A, Majone M, et al. Electron transfer from a solid-state electrode assisted by methyl viologen sustains efficient microbial reductive dechlorination of TCE[J]. Environmental Science Technology, 2007, 41(7): 2554-2559.
[37] Aulenta F,Canosa A, Majone M, et al. Trichloroethene dechlorination and H2 evolution are alternative biological pathways of electric charge utilization by a dechlorinating culture in a bioelectrochemical system[J]. Environmental Science Technology, 2008, 42(16): 6185-6190.
[38] Aulenta F, Canosa A, Roma L D, et al. Influence of mediator immobilization on the electrochemically assisted microbial dechlorination of trichloroethene (TCE) and cis-diechloroethene (cis-DCE)[J]. Journal of Chemical Technology and Biotechnology, 2009, 84(6): 864-870.
[39] Aulenta F,Maio V D, Ferri T, et al. The humic acid analogue antraquinone-2,6-disulfonate (AQDS) serves as an electron shuttle in the electricity-driven microbial dechlorination of trichloroethene to cis-dichloroethene[J]. Bioresource Technology, 2010, 101(24): 9728-9733.
[40] Strycharz S M, Woodard T L, Johnson J P, et al. Graphite electrode as a sole electron donor for reductive dechlorination of tetrachloroethene by Geobacter lovleyi[J]. Applied and Environmental Microbiology, 2008, 74(19): 5943-5947.
[41] Strycharz S M, Gannon S M, Boles A R, et al. Reductive dechlorination of 2-chlorophenol by?Anaeromyxobacter dehalogenans with an electrode serving as the electron donor[J]. Environmental Microbiology Reports, 2010, 2(2): 289-294.
[42] Trump J I V, Coates J D. Thermodynamic targeting of microbial perchlorate reduction by selective electron donors[J]. The ISME Journal, 2009, 3: 466-476.
[43] Butler C, Clauwaert P, Green S J, et al. Bioelectrochemical perchlorate reduction in a microbial fuel cell[J]. Environmental Science and Technology, 2010, 44(12): 4685-4691.
[44] Gregory K B, Lovley D R. Remediation and recovery of uranium from contaminated subsurface environments with electrodes[J]. Environmental Science and Technology, 2005, 39(22): 8943-8947.
[45] Wang G, Huang L P, Zhang Y F. Cathodic reduction of hexavalent chromium [Cr(VI)] coupled with electricity generation in microbial fuel cells[J]. Biotechnology Letters, 2008, 30:1959-1966.
[46] Tandukar M, Huber S J, Onodera T, et al. Biological chromium(VI) reduction in the cathode of a microbial fuel cell[J]. Environmental Science and Technology, 2009, 43(21): 8159-8165.
[47] Huang L P, Chai X L, Chen G H, et al. Effect of set potential on hexavalent chromium reduction and electricity generation from biocathode microbial fuel cells[J]. Environmental Science and Technology, 2011, 45(11):5025-5031.
[48] Huang L P, Chen J, Quan X, et al. Enhancement of hexavalent chromium reduction and electricity production from a biocathode microbial fuel cell[J]. Bioprocess and Biosystems Engineering, 2010, 33(8): 937-945.
[49] Huang L P, Chai X L, Cheng S A, et al. Evaluation of carbon-based materials in tubular biocathode microbial fuel cells in terms of hexavalent chromium reduction and electricity generation[J] . Chemical Engineering Journal, 2011, 166(2): 652-661.
[50] Park D H, Laivenieks M, Guettler M V, et al. Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production[J]. Applied and Environmental Microbiology, 1999, 65(7): 2912-2917.
[51] Cheng S A, Xing D F, Call D F, et al. Direct biological conversion of electrical current into methane by electromethanogenesis[J]. Environmental Science and Technology, 2009, 43(10): 3953-3958.
[52] Villano M, Aulenta F, Ciucci C, et al. Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture[J]. Bioresouce Technology, 2010, 101(9): 3085-3090.
[53] Cao X X, Huang X, Liang P, et al. A completely anoxic microbial fuel cell using a photo-biocathode for cathodic carbon dioxide reduction[J]. Energy and Environmental Science, 2009, 2(5): 441-548.
[54] Nevin K P, Woodard T L, Franks A E, et al. Microbial electrosynthesis: Feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds[J]. mBio, 2010, 1(2): 3-10.
[55] Nevin K P, Hensley S A, Franks A E, et al. Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms[J]. Applied and Environmental Microbiology, 2011, 77(9): 2882-2886.
[56] Cordas C M, Guerra L T, Xavier C, et al. Electroactive biofilms of sulphate reducing bacteria[J] . Electrochimica Acta, 2008, 54(1): 29-34.
[57] Yu L, Duan J, Zhao W, et al. Characteristics of hydrogen evolution and oxidation catalyzed by Desulfovibrio caledoniensis biofilm on pyrolytic graphite electrode[J]. Electrochimica Acta, 2011, 56(25): 9041-9047.
[58] Su W T, Zhang L X, Tao Y, et al. Sulfate reduction with electrons directly derived from electrodes in bioelectrochemical systems[J]. Electrochemistry Communications, 2012, 22: 37-40.
文章导航

/