[1] Angenent L T, Karim K, Al-Dahhan M H, et al. Production of bioenergy and biochemicals from industrial and agricultural wastewater[J]. Trends in Biotechnology, 2004, 22(9): 475-485.
[2] Rabaey K, Verstraete W. Microbial fuel cells: Novel biotechnology for energy generation[J]. Trends in Biotechnology, 2005, 23(6): 291-298.
[3] Geelhoed J S, Hamelers H V M, Stams A J M. Eletricity-mediated biological hydrogen production[J]. Current Opinion in Microbiology, 2010, 13(3): 307-315.
[4] Lu L, Xing D, Xie T, et al. Hydrogen production from proteins via electrohydrogenesis in microbial electrolysis cells[J]. Biosensors and Bioelectronics, 2010, 25(12): 2690-2695.
[5] Beschkov V, Velizarow S, Agathos S N, et al. Bacterial denitrification of waste water stimulated by constant electric field[J]. Biochemical Engineering Journal, 2004, 17(2): 141-145.
[6] Ghafari S, Hasan M, Aroua M K. Bio-eletrochemical removal of nitrate from water and wastewater-A review[J]. Bioresource Technology, 2008, 99(10): 3965-3974.
[7] Rinaldi A, Mecheri B, Garavaglia V, et al. Engineering materials and biology to boost performance of microbial fuel cells: a critical review[J]. Energy and Environmental Science, 2008, 1(4): 417-429.
[8] Lovley D R, Nevin K P. A shift in the current: New applications and concepts for microbe-electrode electron exchange[J]. Current Opinion in Microbiology, 2011, 22(3): 441-446.
[9] Sadoff H L, Halvorson H O, Finn R K. Electrolysis as a means of aerating submerged cultures of microorganisms[J]. Applied Microbiology, 1956, 4 (4): 164-170.
[10] He Z, Angenent L T. Application of bacterial biocathodes in microbial fuel cells[J]. Electroanalysis, 2006, 18(19): 2009-2015.
[11] Wang G (王刚), Huang L P(黄丽萍), Zhang Y F(张翼峰). Study and application of biological cathode in microbial fuel cells[J]. Environmental Science and Technology(环境科学与技术), 2008, 31(12): 101-103.
[12] Chen L X(陈立香), Xiao Y(肖勇), Zhao F(赵峰). Biocathodes in microbial fuel cells[J]. Progress in Chemistry(化学进展), 2012, 24(1): 157-162.
[13] Thrash J C, Coates J D. Review: Direct and indirect electrical stimulation of microbial metabolism[J]. Environmental Science and Technology, 2008, 42(11): 3921-3931.
[14] Aulenta F, Catervi A, Majone M, et al. Electron transfer from a solid-state electrode assisted by methyl viologen sustains ef?cient microbial reductive dechlorination of TCE[J]. Environmental Science and Technology. 2007, 41 (7): 2554-2559.
[15] Thrash J C, Trump J I V, Weber K A, et al. Electrochemical stimulation of microbial perchlorate reduction[J]. Environmental Science and Technology, 2007, 41 (5): 1740-1746.
[16] Park D H, Zeikus J G. Utilization of electrically reduced neutral red by Actinobacillus succinogenes: Physiological function of neutral red inmembrane-driven fumarate reduction and energy conservation[J]. Journal of Bacteriology, 1999, 181 (8), 2403-2410.
[17] Lovley D R. Powering microbes with electricity: Direct electron transfer from electrodes to microbes[J]. Environmental Microbiology Reports, 2011, 3(1): 27-35.
[18] Rabaey K, Boon N, Verstraete W, et al. Microbial phenazine production enhances electron transfer in biofuel cells[J]. Environmental Science and Technology, 2005, 39(9): 3401-3408.
[19] Marsili E, Baron D B, Shikhare I D, et al. Shewanella secretes ?avins that mediate extracellular electron transfer[J]. Proceedings of the National Academy of Sciences, 2008, 105(10): 3968-3973.
[20] Freguia S, Tsujimura S, Kano K. Electron transfer pathways in microbial oxygen biocathodes[J]. Electrochimica Acta , 2010, 55(3): 813-818.
[21] Aulenta F, Canosa A, Reale P, et al. Microbial reductive dechlorination of trichloroethene to ethene with electrodes serving as electron donors without the external addition of redox mediators[J]. Biotechnology and Bioengineering, 2009, 103(1): 85-91.
[22] Gregory K B, Bond D R, Lovley D R. Graphite electrodes as electron donors for anaerobic respiration[J]. Environmental Microbiology, 2004, 6(6): 596-604.
[23] Rosenbauma M, Aulenta F, Villano M, et al. Cathodes as electron donors for microbial metabolism: Which extracellular electron transfer mechanisms are involved?[J]. Bioresource Technology, 2011, 102(1): 324-333.
[24] Sakakibara Y, Kuroda M. Electric prompting and control of denitrification[J]. Biotechnology and Bioengineering, 1993, 42(4): 535-537.
[25] Sakakibara Y, Flora J R V, Suidan M T, et al. Modeling of electrochemically-activated denitrifying biofilms[J]. Water Research, 1994, 28(5): 1077-1086.
[26] Sakakibara Y, Araki K, Watanabe T, et al. The denitrification and neutralization performance of an electrochemically activated biofilm reactor used to treat nitrate-contaminated groundwater[J]. Water Science and Technology, 1997, 36(1): 61-68.
[27] Kuroda M, Watanabe T, Umedu Y. Simultaneous COD removal and denitrification of wastewater by bio-electro reactors[J]. Water Science and Technology, 1997, 35(8): 161-168.
[28] Islam S, Suidan M T. Electrolytic denitrification: Long term performance and effects of current intensity[J]. Water Research, 1998, 32(2): 528-536.
[29] Sakakibara Y, Kusaka J. In situ autotrophic denitrification using electrode under oligotrophic conditions[C]. Proceedings of 5th International In Situ and On-site Bioremediation Symposium, San Diego, CA, 1999, 4: 73-78.
[30] Kim Y H, Park Y J, Song S H, et al. Nitrate removal without carbon source feeding by permeabilized Ochrobactrum anthropi SY509 using an electrochemical reactor[J]. Enzyme and Microbial Technology, 2007, 41(5): 663-668.
[31] Clauwaert P, Rabaey K, Aelterman P, et al. Biological denitri?cation in microbial fuel cells[J]. Environmental Science and Technology, 2007, 41(9): 3354-3360.
[32] Virdis B, Rabaey K, Yuan Z G, et al. Electron ?uxes in a microbial fuel cell performing carbon and nitrogen removal[J]. Environmental Science and Technology, 43(13): 5144-5149.
[33] Virdis B, Rabaey K, Yuan Z, et al. Microbial fuel cells for simultaneous carbon and nitrogen removal[J]. Water Research, 2008, 42(12): 3013-3024.
[34] Puig S, Coma M, Desloover J, et al. Autotrophic Denitrification in microbial fuel cells treating low ionic strength waters[J]. Environmental Science and Technology, 2012, 46(4): 2309-2315.
[35] Loffler F E, Edwards E A. Harnessing microbial activities for environmental cleanup[J]. Current Opinion in Biotechnology, 2006, 17(3): 274-284.
[36] Aulenta F, Catervi A, Majone M, et al. Electron transfer from a solid-state electrode assisted by methyl viologen sustains efficient microbial reductive dechlorination of TCE[J]. Environmental Science Technology, 2007, 41(7): 2554-2559.
[37] Aulenta F,Canosa A, Majone M, et al. Trichloroethene dechlorination and H2 evolution are alternative biological pathways of electric charge utilization by a dechlorinating culture in a bioelectrochemical system[J]. Environmental Science Technology, 2008, 42(16): 6185-6190.
[38] Aulenta F, Canosa A, Roma L D, et al. Influence of mediator immobilization on the electrochemically assisted microbial dechlorination of trichloroethene (TCE) and cis-diechloroethene (cis-DCE)[J]. Journal of Chemical Technology and Biotechnology, 2009, 84(6): 864-870.
[39] Aulenta F,Maio V D, Ferri T, et al. The humic acid analogue antraquinone-2,6-disulfonate (AQDS) serves as an electron shuttle in the electricity-driven microbial dechlorination of trichloroethene to cis-dichloroethene[J]. Bioresource Technology, 2010, 101(24): 9728-9733.
[40] Strycharz S M, Woodard T L, Johnson J P, et al. Graphite electrode as a sole electron donor for reductive dechlorination of tetrachloroethene by Geobacter lovleyi[J]. Applied and Environmental Microbiology, 2008, 74(19): 5943-5947.
[41] Strycharz S M, Gannon S M, Boles A R, et al. Reductive dechlorination of 2-chlorophenol by?Anaeromyxobacter dehalogenans with an electrode serving as the electron donor[J]. Environmental Microbiology Reports, 2010, 2(2): 289-294.
[42] Trump J I V, Coates J D. Thermodynamic targeting of microbial perchlorate reduction by selective electron donors[J]. The ISME Journal, 2009, 3: 466-476.
[43] Butler C, Clauwaert P, Green S J, et al. Bioelectrochemical perchlorate reduction in a microbial fuel cell[J]. Environmental Science and Technology, 2010, 44(12): 4685-4691.
[44] Gregory K B, Lovley D R. Remediation and recovery of uranium from contaminated subsurface environments with electrodes[J]. Environmental Science and Technology, 2005, 39(22): 8943-8947.
[45] Wang G, Huang L P, Zhang Y F. Cathodic reduction of hexavalent chromium [Cr(VI)] coupled with electricity generation in microbial fuel cells[J]. Biotechnology Letters, 2008, 30:1959-1966.
[46] Tandukar M, Huber S J, Onodera T, et al. Biological chromium(VI) reduction in the cathode of a microbial fuel cell[J]. Environmental Science and Technology, 2009, 43(21): 8159-8165.
[47] Huang L P, Chai X L, Chen G H, et al. Effect of set potential on hexavalent chromium reduction and electricity generation from biocathode microbial fuel cells[J]. Environmental Science and Technology, 2011, 45(11):5025-5031.
[48] Huang L P, Chen J, Quan X, et al. Enhancement of hexavalent chromium reduction and electricity production from a biocathode microbial fuel cell[J]. Bioprocess and Biosystems Engineering, 2010, 33(8): 937-945.
[49] Huang L P, Chai X L, Cheng S A, et al. Evaluation of carbon-based materials in tubular biocathode microbial fuel cells in terms of hexavalent chromium reduction and electricity generation[J] . Chemical Engineering Journal, 2011, 166(2): 652-661.
[50] Park D H, Laivenieks M, Guettler M V, et al. Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production[J]. Applied and Environmental Microbiology, 1999, 65(7): 2912-2917.
[51] Cheng S A, Xing D F, Call D F, et al. Direct biological conversion of electrical current into methane by electromethanogenesis[J]. Environmental Science and Technology, 2009, 43(10): 3953-3958.
[52] Villano M, Aulenta F, Ciucci C, et al. Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture[J]. Bioresouce Technology, 2010, 101(9): 3085-3090.
[53] Cao X X, Huang X, Liang P, et al. A completely anoxic microbial fuel cell using a photo-biocathode for cathodic carbon dioxide reduction[J]. Energy and Environmental Science, 2009, 2(5): 441-548.
[54] Nevin K P, Woodard T L, Franks A E, et al. Microbial electrosynthesis: Feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds[J]. mBio, 2010, 1(2): 3-10.
[55] Nevin K P, Hensley S A, Franks A E, et al. Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms[J]. Applied and Environmental Microbiology, 2011, 77(9): 2882-2886.
[56] Cordas C M, Guerra L T, Xavier C, et al. Electroactive biofilms of sulphate reducing bacteria[J] . Electrochimica Acta, 2008, 54(1): 29-34.
[57] Yu L, Duan J, Zhao W, et al. Characteristics of hydrogen evolution and oxidation catalyzed by Desulfovibrio caledoniensis biofilm on pyrolytic graphite electrode[J]. Electrochimica Acta, 2011, 56(25): 9041-9047.
[58] Su W T, Zhang L X, Tao Y, et al. Sulfate reduction with electrons directly derived from electrodes in bioelectrochemical systems[J]. Electrochemistry Communications, 2012, 22: 37-40.