[1]Bockris J O M, Reddy A K N. Modern electrochemistry 2b: Electrodics in chemistry, engineering, biology and environmental science[M]. New York: Kluwer Academic/Plenum Publishers, 1998.[2]Bianco P. The origin of bioelectrochemistry: An overview [M] // Bard A J, Stratmann M, Wilson G S (ed). Encyclopedia of electrochemistry, Volume 9: Bioelectrochemistry. Weinheim: Wiley-VCH. 2002.[3]He P A, Xu Y, Fang Y Z. A review: Electrochemical DNA biosensors for sequence recognition [J]. Analytical Letters, 2005, 38(15): 2597-2623.[4]Arpaia P, Clemente F, Romanucci C. An instrument for prosthesis osseointegration assessment by electrochemical impedance spectrum measurement[J]. Measurement, 2008, 41(9): 1040-1044.[5]Hart J P, Crew A, Crouch E, et al. Some recent designs and developments of screen-printed carbon electrochemical sensors/biosensors for biomedical, environmental, and industrial analyses [J]. Analytical Letters, 2004, 37(5): 789-830.[6]Rosenbaum M, He Z, Angenent L T. Light energy to bioelectricity: Photosynthetic microbial fuel cells[J]. Current Opinion in Biotechnology, 2010, 21(3): 259-264.[7]Pingarron J M, Yanez-Sedeno P, Gonzalez-Cortes A. Gold nanoparticle-based electrochemical biosensors[J]. Electrochimica Acta, 2008, 53(19): 5848-5866.[8]Wang J. Carbon-nanotube based electrochemical biosensors: A review[J]. Electroanalysis, 2005, 17(1): 7-14.[9]Ding L, Du D, Zhang X J, et al. Trends in cell-based electrochemical biosensors[J]. Current Medicinal Chemistry, 2008,15(30): 3160-3170.[10]Bartlett P N. Bioelectrochemistry: Fundamentals, experimental techniques and applications[M]. Hoboken, NJ: John Wiley & Sons. 2008.[11]Newman A. Product review: What's current in potentiostats[J]. Analytical Chemistry, 1997, 69(11): 369A-372A.Smith J, Hinson-Smith V. Product review: The potentiostat: Electrochemistry's utility player [J]. Analytical Chemistry, 2002,74(19): 539A-541A.[12]Chen C G, Liu Y P, Wu S G. The development of electrochemical analysis and measurement system in domestics[J]. Modern Scientific Instruments (现代科学仪器), 2004, 3: 8-11.[13]Gu W W, Zhao Y. Cellular electrical impedance spectroscopy: An emerging technology of microscale biosensors[J]. Expert Review of Medical Devices, 2010,7(6): 767-779.[14]Hong J, Kandasamy K, Marimuthu M, et al. Electrical cell-substrate impedance sensing as a non-invasive tool for cancer cell study [J]. Analyst, 2011,136(2):237-245.[15]Kandasamy K, Choi C S, Kim S. An efficient analysis of nanomaterial cytotoxicity based on bioimpedance[J]. Nanotechnology, 2010, 21(37): 375501.[16]Johnstone A F M, Gross G W, Weiss D G, et al. Microelectrode arrays: A physiologically based neurotoxicity testing platform for the 21st century[J]. Neurotoxicology, 2010, 31(4): 331-350.[17]Huang C W, Hsieh Y J, Tsai J J, et al. Effects of lamotrigine on field potentials, propagation, and long-term potentiation in rat prefrontal cortex in multi-electrode recording[J]. Journal of Neuroscience Research, 2006, 83(6): 1141-1150.[18]Charvet G, Rousseau L, Billoint O, et al. BiomeaTM: A versatile high-density 3D microelectrode array system using integrated electronics[J]. Biosensors & Bioelectronics, 2010, 25(8): 1889-1896.[19]Ye X S, Wang P, Liu J, et al. A portable telemetry system for brain stimulation and neuronal activity recording in freely behaving small animals [J]. Journal of Neuroscience Methods, 2008, 174(2): 186-193.[20]Jones I L, Livi P, Lewandowska M K, et al. The potential of microelectrode arrays and microelectronics for biomedical research and diagnostics[J]. Analytical and Bioanalytical Chemistry, 2011, 399(7): 2313-2329.[21]Stett A, Egert U, Guenther E, et al. Biological application of microelectrode arrays in drug discovery and basic research[J]. Analytical and Bioanalytical Chemistry, 2003, 377(3): 486-495.[22]Amatore C, Arbault S, Guille M, et al. Electrochemical monitoring of single cell secretion: Vesicular exocytosis and oxidative stress[J]. Chemical Reviews, 2008, 108(7): 2585-2621.[23]Sun P, Laforge F O, Abeyweera T P, et al. Nanoelectrochemistry of mammalian cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(2): 443-448.[24]Schulte A, Schuhmann W. Single-cell microelectrochemistry[J]. Angew Chem-Int Edit, 2007, 46(46): 8760-8777.[25]Leszczyszyn D J, Jankowski J A, Viveros O H, et al. Nicotinic receptor-mediated catecholamine secretion from individual chromaffin cells[J]. The Journal of Biological Chemistry, 1990, 265(25): 14736-14737.[26]Finnegan J M, Pihel K, Cahill P S, et al. Vesicular quantal size measured by amperometry at chromaffin, mast, pheochromocytoma, and pancreatic[J]. Journal of Neurochemistry, 1996, 66(5): 1914-1923.[27]Westerink R H S, Ewing A G. The pc12 cell as model for neurosecretion[J]. Acta Physiol, 2008, 192(2): 273-285.[28]Segura F, Brioso M A, Gomez J F, et al. Automatic analysis for amperometrical recordings of exocytosis[J]. Journal of Neuroscience Methods, 2000, 103(2): 151-156.[29]Gomez J F, Brioso M A, Machado J D, et al. New approaches for analysis of amperometrical recordings [M]//Oconnor D T, Eiden L E (ed). Chromaffin cell: Trnsmitter biosynthesis, storage, release, actions, and informatics. New York: New York Acad Sciences, 2002: 647-654.[30]Wang W, Foley K, Shan X, et al. Single cells and intracellular processes studied by a plasmonic-based electrochemical impedance microscopy[J]. Nature Chemistry, 2011, 3(3): 249-255.[31]Keithley R B, Takmakov P, Bucher E S, et al. Higher sensitivity dopamine measurements with faster-scan cyclic voltammetry[J]. Analytical Chemistry, 2011, 83(9): 3563-3571. |