[1]Bockris J O M, Reddy A K N. Modern electrochemistry 2A[M]. New York, Boston: Kluwer Academic Publishers, 2002.[2]Renato C A, Gewirth A A. Characterization of water structure on silver electrode surfaces by SERS with two-dimensional correlation spectroscopy[J]. Anal Chem, 2010, 82(4): 1305–1310.[3]Yao Jian-Lin, Yuan Ya-Xian, Fan Xiao-Min, et al. The reorientation of benzonitrile on platinum electrode probed by surface enhanced Raman spectroscopy[J]. J Electroanal Chem, 2008, 624(1/2): 129–133.[4]Rudneva A V, Molodkinaa E B, Danilova A I, et al. Adsorption behavior of acetonitrile on platinum and gold electrodes of various structures in solution of 0.5M H2SO4[J]. Electrochimica Acta, 2009, 54: 3692–3699.[5]Ataka K,Osawa M. In situ infrared study of water-sulfate coadsorption on gold(111) in sulfuric acid solutions[J]. Langmuir, 1998, 14(4): 951-959.[6]Toney M F, Howard J N, Richer J, et al. Voltage-dependent ordering of water molecules at an electrode–electrolyte interface[J]. Nature, 1994, 368: 444-446.[7]Lucas C A, Thompson P, Cormack M, et al. Temperature-induced ordering of metal/adsorbate structures at electrochemical interfaces[J]. J Am Chem Soc, 2009, 131: 7654–7661.[8]Duan Sai, Wu De-Yin, Xu Xin, et al. Structures of water molecules adsorbed on a gold electrode under negative potentials[J]. J Phys Chem C, 2010, 114 (9): 4051–4056.[9]Markovits A, Minot C. Theoretical study of the acetonitrile flip-flop with the electric field orientation: adsorption on a Pt(111) electrode surface[J]. Catalysis Letters, 2003, 91(3/4):225-234.[10]Raschke M B,Shen Y R. Nonlinear optical spectroscopy of solid interfaces[J]. Current Opinion in Solid State and Materials Science, 2004, 8: 343–352.[11]Hopkins A J, McFearin C L,Richmond G L. Investigations of the solid-aqueous interface with vibrational sum-frequency spectroscopy[J]. Current Opinion in Solid State and Materials Science, 2005, 9: 19–27.[12]Somorjai G A ,Park J Y. Concepts, instruments, and model systems that enabled the rapid evolution of surface science[J]. Sur Sci, 2009, 603: 1293–1300.[13]Vidal F,Tadjeddine A. Sum-frequency generation spectroscopy of interfaces[J]. Rep Prog Phys, 2005, 68: 1095–1127.[14]Noguchi H, Okada T, Uosaki K. SFG study on potential-dependent structure of water at Pt electrode/electrolyte solution interface[J]. Electrochimica Acta, 2008, 53: 6841–6844.[15]Nihonyanagi S, Ye S, Uosaki K,et al. Potential-dependent structure of the interfacial water on the gold electrode[J]. Sur Sci, 2004, 573: 11–16.[16]Schultz Z D, Shaw S K,Gewirth A A. Potential dependent organization of water at the electrified metal-liquid interface[J]. J Am Chem Soc, 2005, 127: 15916-15922.[17]Zheng W Q,Tadjeddine A. Adsorption processes and structure of water molecules on Pt(110) electrodes in perchloric solutions[J]. J Chem Phys, 2003, 119 (24): 13096-13099.[18]Peremans A,Tadjeddine A. Electrochemical deposition of hydrogen on platinum single crystals studied by infrared-visible sum-frequency generation[J]. J Chem Phys, 1995, 103 (16): 7197-7203.[19]Tadjeddine A,Peremans A. Vibrational spectroscopy of the electrochemical interface by visible infrared sum frequency generation[J]. J Electroanal Chem, 1996, 409: 115-121.[20]Noguchi H, Okada T, Uosaki K. Molecular structure at electrode/electrolyte solution interfaces related to electrocatalysis[J]. Faraday Discuss, 2008, 140: 125–137.[21]Baldelli S, Mailhot G, Ross P N, et al. Potential-dependent vibrational spectroscopy of solvent molecules at the Pt(111) electrode in a water/acetonitrile mixture studied by sum frequency generation[J]. J Am Chem Soc, 2001, 123: 7697-7702.[22]Baldelli S, Mailhot G, Ross P, et al. Potential dependent orientation of acetonitrile on platinum (111) electrode surface studied by sum frequency generation[J]. J Phys Chem B, 2001, 105: 654-662.[23]Roke S, Kleyn A W, Bonn M, Femtosecond sum frequency generation at the metal–liquid interface[J]. Sur Sci, 2005, 593: 79–88.[24]Casillas-Ituarte N N,Allen H C. Interfacial organization of acetonitrile: simulation and experiment[J]. Chem Phy Lett, 2009, 483: 84–89.[25]Faguy P W, Fawcett W R, Liu G,et al. A study of the adsorption of acetonitrile on a gold electrode from aqueous solutions using in situ vibrational spectroscopy[J]. J Electroanal Chem, 1992, 339: 339-353.[26]Waldrup S B, Williams C T. Acetonitrile adsorption on polycrystalline platinum: an in situ investigation using sum frequency spectroscopy[J]. J Phys Chem C, 2008, 112: 219-226.[27]Ding F, Hu Z H, Zhong Q, et al. Interfacial organization of acetonitrile: simulation and experiment[J]. J Phys Chem C, 2010, 114(41): 17651-17659.[28]Wang Hong-fei, Gan Wei, Lu Rong, et al.Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS)[J]. Int Rev Phy Chem, 2005, 24: 191-256.[29]Miranda P B,Shen Y R. Liquid interfaces: A study by sum-frequency vibrational spectroscopy[J]. J Phys Chem B, 1999, 103(17): 3292-3307.[30]Zhuang X, Miranda P B, Kim D,et al. Mapping molecular orientation and conformation at interfaces by surface nonlinear optics[J]. Phys Rev B, 1999, 59(19): 12632-12640.[31]Zheng De-Sheng, Wang Yuan, Liu An-An, et al. Microscopic molecular optics theory of surface second harmonic generation and sum-frequency generation spectroscopy based on the discrete dipole lattice model[J]. Int Rev Phy Chem, 2008, 27(4): 629–664. |