电化学(中英文) ›› 2025, Vol. 31 ›› Issue (6): 2415004. doi: 10.61558/2993-074X.3541
收稿日期:
2024-12-24
修回日期:
2025-04-13
接受日期:
2025-04-24
发布日期:
2025-04-24
出版日期:
2025-06-28
Received:
2024-12-24
Revised:
2025-04-13
Accepted:
2025-04-24
Online:
2025-04-24
Published:
2025-06-28
Contact:
*Yuji Matsumoto, E-mail address: y-matsumoto@tohoku.ac.jp
摘要:
我们将最先进“真空一致电化学”技术引入到氧化物与离子液体(IL)界面的研究中。脉冲激光沉积(PLD)是实现纳米级制备高质量氧化物外延薄膜的强大而最精细的技术之一。另一方面,电化学是一种简单、非常灵敏且无损的固液界面分析技术。为了确保此类外延氧化物薄膜以及块状氧化物单晶与IL接口实验的可重复性,我们采用了自制的以IL为电解质的PLD电化学(EC)系统。该系统允许进行从制备定义明确的氧化物电极表面到其电化学分析的全真空实验。研究主题包括氧化物自身特性(如载流子密度和相对介电常数)的电化学评估,以及与IL接触的氧化物的界面特性(如平带电势和双电层电容),最后是对全固态电化学的未来展望。
松本雄司. 离子液体中的真空一致电化学与氧化物外延相结合[J]. 电化学(中英文), 2025, 31(6): 2415004.
Yuji Matsumoto. Vacuum Consistent Electrochemistry in Ionic Liquid Combined with Oxide Epitaxy[J]. Journal of Electrochemistry, 2025, 31(6): 2415004.
[1] | Ishikawa R M, Hubbard A T. Study of platinum electrodes by means of thin layer electrochemistry and low-energy electron diffraction Part I. Electrode surface structure after exposure to water and aqueous electrolytes[J]. J. Electroanal. Chem., 1976, 69: 317-338. |
[2] | Clavilier J, Faure R, Guinet G, Durand J. Preparation of monocrystalline Pt microelectrodes and electrochemical study of the plane surfaces cut in the direction of the {111} and {110} planes[J]. J. Electroanal. Chem., 1980, 107: 205-209. |
[3] | Hammond J S, Winograd N. XPS spectroscopic study of potentiostatic and galvanosatic oxidation of Pt electrodes in H2SO4 and HClO4[J]. J. Electroanal. Chem., 1977, 78: 55-69. |
[4] | EI-Jawad M, Chemin J L, Gilles B, Maillard F. A portable transfer chamber for electrochemical measurements on electrodes prepared in ultra-high vacuum[J]. Rev. Sci. Instrum., 2013, 84(6): 064101. |
[5] | Wadayama T, Todoroki N, Yamada Y, Sugawara T, Miyamoto K, Iijima Y. Oxygen reduction reaction activities of Ni/Pt(111) model catalysts fabricated by molecular beam epitaxy[J]. Electrochem. Commun., 2010, 12(8): 1112-1115. |
[6] | Hubbard A T, Stickney J L, Sorinaga M P, Chia V K F, Rosasco S D, Schardt B C, Solomun T, Song D, White J H, Wieckowski A. Electrochemical process at well-defined surfaces[J]. J. Electroanal. Chem. 1984, 168(1-2): 43-66. |
[7] | Taniguchi M, Kuzembaev E, Tanaka K. A mimic model of Pt-Rh catalyst prepared by electrochemical deposition of Rh on the Pt(100) surface[J]. Suf. Sci. 1993, 290(3): L711-L717. |
[8] | Attard G A, Price R, Al-Akl A. Palladium adsorption on Pt(111): A combined electrochemical and ultra-high vacuum study[J]. Electrochim. Acta, 1994, 39(11-12): 1525-1530. |
[9] | Yamada T, Batina N, Itaya K. Structure of electrochemically deposited Iodine adlayer on Au(111) studied by ultrahigh-vacuum instrumentation and in-situ STM[J]. J. Phys. Chem., 1995, 99(21): 8817-8823. |
[10] | Sung Y E, Chrzanowski W, Zolfaghari A, Jerkiewicz G, Wieckowski A. Structure of chemisorbed sulfur on a Pt(111) electrode[J]. J. Am. Chem. Soc., 1997, 119(1): 194-200. |
[11] | Reniers F. The development of a transfer mechanism between UHV and electrochemistry environments[J]. J. Phys. D: Appl. Phys., 2002, 35(21): R169-R188. |
[12] | Takata S, Tanaka R, Hachiya A, Matsumoto Y. Nanoscale oxygen nonstoichiometry in epitaxial TiO2 films grown by pulsed laser deposition[J]. J. Appl. Phys., 2011, 110(10): 103513. |
[13] | Ogasawara H, Sawatari Y, Inukai J, Ito M. Adsorption of bisulfate anion on a Pt(111) electrode: a comparison of in-situ and ex-situ IRAS[J]. J. Electroanal. Chem., 1993, 358(1-2): 337-342. |
[14] | Buchner F, Fuchs S, Behm R J. UHV preparation and electrochemical/-catalytic properties of well-defined Co- and Fe-containing unary and binary oxide model cathodes for the oxygen reduction and oxygen evolution reaction in Zn-air batteries[J]. J. Electroana. Chem., 2021, 896(SI): 115497. |
[15] |
Schnaidt J, Beckord S, Engstfeld A K, Klein J, Brimaud S, Behm R J. A combined UHV-STM flow cell set-up for electrochemical/electrocatalytic studies of structurally well-defined UHV prepared model electrodes[J]. Phys. Chem. Chem. Phys., 2017, 19(6): 4166-4178.
doi: 10.1039/c6cp06051j pmid: 27777999 |
[16] | Kerger P, Vogel D, Rohwerder M. Electrochemistry in ultra-high vacuum: The fully transferrable ultra-high vacuum compatible electrochemical cell[J]. Rev. Sci. Instrum., 2018, 89(11): 113102. |
[17] | Bednorz J G, Müller K A. Possible high Tc superconductivity in the Ba-La-Cu-O system[J]. Z. Phys. B - Condensed Matter, 1986, 64(2): 189-193. |
[18] |
Ashfold M N R, Claeyssens F, Fuge G M, Henley S J. Pulsed laser ablation and deposition of thin films[J]. Chem. Soc. Rev., 2004, 33(1): 23-31.
pmid: 14737506 |
[19] |
Kawasaki M, Takahashi K, Maeda T, Tsuchiya R, Shinohara M, Ishiyama O, Yonezawa T, Yoshimoto M, Koinuma H. Atomic control of the SrTiO3 crystal surface[J]. Science, 1994, 266(5190): 1540-1542.
pmid: 17841713 |
[20] | Takahashi R, Tsuruta Y, Yonezawa Y, Ohsawa T, Koinuma H, Matsumoto Y. Ceramic liquid droplets stabilized in vacuum[J]. J. Appl. Phys., 2007, 101(3): 033511. |
[21] | Yoshimoto M, Maeda T, Ohnishi T, Koinuma H, Ishiyama O, Shinohara M, Kubo M, Miura R, Miyamoto A. Atomic-scale formation of ultrasmooth surfaces on sapphire substrates for high-quality thin-film fabrication[J]. Appl. Phys. Lett., 1995, 67(18): 2615-2617. |
[22] | Li G, Ohta J, Okamoto K, Kobayashi A, Fujioka H. Room-temperature epitaxial growth of GaN on atomically flat MgAl2O4 substrates by pulsed-laser deposition[J]. Jpn. J. Appl. Phys., 2006, 45(17-19): L457-L459. |
[23] | Honke T, Fujioka H, Ohta J, Oshima M. InN epitaxial growths on Yttria stabilized zirconia (111) step substrates[J]. J. Vac. Sci. Technol., 2004, 22(6): 2487-2489. |
[24] | Zhao X R, Lu W Q, Okazaki S, Konishi Y, Akahane K, Ishibashi T, Sato K, Matsumoto Y, Koinuma H, Hasegawa T. High-throughput characterization of BixY3-xFe5O12combinatorial thin films by magneto-optical imaging technique[J]. Appl. Surf. Sci., 2006, 252(7): 2628-2633. |
[25] | Yamamoto Y, Nakajima K, Ohsawa T, Matsumoto Y, Koinuma H. Preparation of atomically smooth TiO2 single crystal surfaces and their photochemical property[J]. Jpn. J. Appl. Phys., 2005, 44(16-19): L511-L514. |
[26] | Kobayashi A, Fujioka H, Ohta J, Oshima M. Room temperature layer by layer growth of GaN on atomically flat ZnO[J]. Jpn. J. Appl. Phys., 2004, 43(1A-B): L53-L55. |
[27] | Yamamoto Y, Matsumoto Y, Koinuma H. Homo-epitaxial growth of rutile TiO2 film on step and terrace structured substrate[J]. Appl. Surf. Sci., 2004, 238(1-4): 189-192. |
[28] |
Sun Y, Wu C R, Wang F, Bi R H, Zhuang Y B, Liu S, Chen M S, Zhang K H L, Yan J W, Mao B W, Tian Z Q, Cheng J. Step-induced double-row pattern of interfacial water on rutile TiO2(110) under electrochemical conditions[J]. Chem. Sci., 2024, 15(31): 12264-12269.
doi: 10.1039/d4sc01952k pmid: 39118606 |
[29] | Shiraishi N, Kato Y, Arai H, Tsuchimine N, Kobayashi S, Mitsuhashi M, Soga M, Kaneko S, Yoshimoto M. Room-temperature epitaxial growth of (Li,Ni)O thin film with Li content up to 60 mol%[J]. Jpn. J. Appl. Phys., 2010, 49(10): 108001. |
[30] | Kursumovic A, Prestigiacomo J, de h-Ora M, Li W, Feighan J, Smolyaninova V, Smolyaninov I, Osofsky M, MacManus-Driscoll J L. Optimisation of pulsed laser deposited Ba1-xKxBiO3 thin films with tunable superconducting properties by control of K doping level, x[J]. Superconductivity, 2024, 11: 100115. |
[31] | Li D F, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y. Superconductivity in an infinite-layer nickelate[J]. Nature, 2019, 572(7771): 624-627. |
[32] | Norton D P, Goyal A, Budai J D, Christen D K, List F A. Epitaxial YBa2Cu3O7 on biaxially textured nickel (001): An approach to superconducting tapes with high critical current density[J]. Science, 1996, 274(5288): 755-757. |
[33] | Yun K S, Choi B D, Matsumoto Y, Song J H, Kanda N, Itoh T, Kawasaki M, Chikyow T, Ahmet P, Koinuma H. Vapor-liquid-solid tri-phase pulsed-laser epitaxy of RBa2Cu3O7-y single-crystal films[J]. Appl. Phys. Lett., 2002, 80(1): 61-63. |
[34] | Mao X L, Berdahl P, Russo R E, Liu H B, Ho J C. Bi-Pb-Sb-Sr-Ca-Cu-O superconducting thin films deposited on Ni-based alloy with yttria-stabilized zirconia intermediate layers[J]. Physica C, 1991, 183(1-3): 167-171. |
[35] | Kimura R, Kaminaga K, Kobayashi T, Cho Y, Maruyama S, Maeda A, Matsumoto Y. Elevating the superconducting temperature in epitaxially-stabilized rock-salt NbO[J]. Chem. Mater., 2024, 36(10): 5028-5036. |
[36] | Winiger J, Kwllwe K, Moor D, Baumann M, Kim D, Chelladural D, Kohli M, Blatter T, Denervaud E, Fedoryshyn Y, Koch U, Pane S, Grange R, Leuthold J. PLD epitaxial thin-film BaTiO3 on MgO - dielectric and electro-optic properties[J]. Adv. Mater. Interfaces, 2024, 11(1): 2300665. |
[37] | Abid A Y, Sun Y W, Hou X, Tan C B, Zhong X L, Zhu R X, Chen H Y, Qu K, Li Y H, Wu M, Zhang J M, Wang J B, Liu K H, Bai X D, Yu D P, Ouyang X P, Wang J, Li J Y, Gao P. Creating polar antivortex in PbTiO3/SrTiO3 superlattice[J]. Nat. Commun., 2021, 12(1): 2054. |
[38] | Kumari S, Mottaghi N, Huang C Y, Trappen R, Bhandari G, Yousefi S, Cabrera G, Seehra M. S, Holcomb M B. Effects of oxygen modification on the structural and magnetic properties of highly-epitaxial La0.7Sr0.3MnO3 (LSMO) thin films[J]. Sci. Rep., 2020, 10(1): 3659. |
[39] | Thong P D, Rijnders G, Blank D H A. Stress-induced magnetic anisotropy of CoFe2O4 thin films using pulsed laser deposition[J]. J. Magn. Magn. Mater., 2007, 310(2): 2621-2623. |
[40] |
Nikam S M, Sharma A, Rahaman M, Teli A M, Mujawar S H, Zahn D R T, Patil P S, Sahoo S C, Salvan G, Patil P B. Pulsed laser deposited CoFe2O4 thin films as supercapacitor electrodes[J]. RSC Adv., 2020, 10(33): 19353-19359.
doi: 10.1039/d0ra02564j pmid: 35515464 |
[41] | Hirayama M, Sonoyama N, Ito M, Minoura M, Mori D, Yamada A, Tamura K, Miyazaki J, Kanno R. Characterization of electrode/electrolyte interface with X-ray reflectometry and epitaxial-film LiMn2O4 electrode[J]. J. Electrochem. Soc., 2007, 154(11): A1065. |
[42] | Ohnishi T, Hang B T, Xu X, Osada M, Takada K. Quality control of epitaxial LiCoO2 thin films grown by pulsed laser deposition[J]. J. Mater. Res., 2010, 25(10): 1886-1889. |
[43] | Haruta M, Shiraki S, Suzuki T, Kumatani A, Ohsawa T, Takagi Y, Shimizu R, Hitosugi T. Negligible “negative space-charge layer effects” at oxide-electrolyte/electrode interfaces of thin-film batteries[J]. Nano Lett., 2016, 15(3): 1498-1502. |
[44] | Ohsawa T, Nakajima K, Matsumoto Y, Koinuma H. Combinatorial discovery of anomalous substrate effect on the photochemical properties of transition metal-doped epitaxial SrTiO3 heterostructures[J]. Appl. Surf. Sci. 2006, 252(7): 2603-2607. |
[45] | Hachiya A, Takata S, Komuro Y, Matsumoto Y. Effects of V-ion doping on the photoelectrochemical properties of epitaxial TiO2(110) thin films on Nb-doped TiO2(110) single crystals[J]. J. Phys. Chem. C, 2012, 116(32): 16951-16956. |
[46] | Kawasaki S, Takahashi R, Yamamoto T, Kobayashi M, Kumigashira H, Yoshinobu J, Komori F, Kudo A, Lippmaa M. Photoelectrochemical water splitting enhanced by self-assembled metal nanopillars embedded in an oxide semiconductor photoelectrode[J]. Nat. Comm., 2016, 7: 11818. |
[47] | Konno R, Maruyama S, Kosaka T, Katoh R, Takahashi R, Kumigashira H, Ichikuni N, Onishi H, Matsumoto Y. Artificially designed compositionally graded Sr-doped NaTaO3 single-crystalline thin films and the dynamics of their photoexcited electron-hole pairs[J]. Chem. Mater., 2021, 33(1): 226-233. |
[48] | Wilkes J S, Zaworotko M J J. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids[J]. Chem. Soc. Chem. Commun., 1992, 13: 965-967. |
[49] |
Hayes R, Warr G G, Atkin R. Structure and nanostructure in ionic liquids[J]. Chem. Rev., 2015, 115(13): 6357-6426.
doi: 10.1021/cr500411q pmid: 26028184 |
[50] | Micaelo N M, Baptista A M, Soares C. M. Parametrization of 1-Butyl-3-methylimidazolium hexafluorophosphate/nitrate ionic liquid for the GROMOS force field[J]. J. Phys. Chem. B, 2006, 110(29): 14444-14451. |
[51] | Höfft O, Bahr S, Himmerlich M, Krischok S, Schaefer J A, Kempter V. Electronic structure of the surface of the ionic liquid [EMIM][Tf2N] studied by metastable impact electron spectroscopy (MIES), UPS, and XPS[J]. Langmuir, 2006, 22(17): 7120-7123. |
[52] |
Armstrong J P, Hurst C, Jones R G, Licence P, Lovelock K R J, Satterley C J, Villar-Garcia I J. Vaporization of ionic liquids[J]. Phys. Chem. Chem. Phys., 2007, 9(8): 982-990.
pmid: 17301888 |
[53] | Kuwabata S, Kongkanand A, Oyamatsu D, Torimoto T. Observation of ionic liquid by scanning electron microscope[J]. Chem. Lett. 2006, 35(6): 600-601. |
[54] | Buchner F, Forster-Tonigold K, Uhl B, Alwast D, Wagner N, Frank-hondeh H, Groß A, Behm R J. Toward the microscopic identification of anions and cations at the ionic liquid Ag(111) interface: A combined experimental and theoretical investigation[J]. ACS Nano, 2013, 7(9): 7773-7784. |
[55] | Chen S, Kobayashi K, Kitaura R, Miyata Y, Shinohara H. Direct HRTEM observation of ultrathin freestanding ionic liquid film on carbon nanotube grid[J]. ACS Nano, 2011, 5(6): 4902-4908. |
[56] | Wagner R S, Ellis W C. Vapor-liquid-solid mechanism of single crystal growth[J]. Appl. Phys. Lett., 1964, 4: 89-91. |
[57] | Lee C D, Park C, Lee H J, Lee K S, Park S J, Noh S K, Koguchi N. Fabrication of self-assembled GaAs/AlGaAs quantum dots by low-temperature droplet epitaxy[J]. Jpn. J. Appl. Phys., 1998, 37(12B): 7158-7160. |
[58] | Koguchi N, Takahashi S, Chikyow T. New MBE growth method for InSb quantum well boxes[J]. J. Cryst. Growth, 1991, 111(1-4): 688-692. |
[59] | No H N, Wu S T. The influences of temperature and residual gas on the wettability of aluminum melt on sapphire[J]. Jpn. J. Appl. Phys., 1998, 37(1): 274-278. |
[60] |
Bradley L C, Gupta M. Microstructured films formed on liquid Substrates via initiated chemical vapor deposition of cross-linked polymers[J]. Langmuir, 2015, 31(29): 7999-8005.
doi: 10.1021/acs.langmuir.5b01663 pmid: 26176742 |
[61] | Voigt M, Dorsfeld S, Volz A, Sokolowski M. Nucleation and growth of molecular organic crystals in a liquid film under vapor deposition[J]. Phys. Rev. Lett., 2003, 91(2): 026103. |
[62] | Takeyama Y, Maruyama S, Matsumoto Y. Growth of single-crystal phase pentacene in ionic liquids by vacuum deposition[J]. Cryst. Growth & Des., 2011, 11(6): 2273-2278. |
[63] | Horike S, Koshiba Y, Misaki M, Ishida K. Crystal growth of rubrene in ionic liquids by vacuum vapor deposition[J]. Jpn. J. Appl. Phys, 2014, 53(5): 05FT03. |
[64] | Costa J C S, Campos R M, Castro A C M, Farinha A F M, Olivelria G N P, Araüjo J P, Santos L M N B F. The effect of onic liquids on the nucleation and growth of perylene films obtained by vapor deposition[J]. CrystEngComm, 2023, 25(6): 913-924. |
[65] | Takeyama Y, Maruyama S, Taniguchi H, Itoh M., Ueno K., Matsumoto Y. Ionic liquid-mediated epitaxy of high-quality C60 crystallites in a vacuum[J]. CrystEngComm, 2012, 14(15): 4939-4945. |
[66] | Torimoto T, Okazaki K, Kiyama T, Hirahara K, Tanaka N, Kuwabata S. Sputter deposition onto ionic liquids: Simple and clean synthesis of highly dispersed ultrafine metal nanoparticles[J]. Appl. Phys. Lett., 2006, 89(24): 243117. |
[67] | Kaneko T, Baba K, Hatakeyama R. Static gas-liquid interfacial direct current discharge plasmas using ionic liquid cathode[J]. J. Appl. Phys., 2009, 105(10): 103306. |
[68] | Ono S, Seki S, Hirahara R, Tominari Y, Takeya J. High-mobility, low-power, and fast-switching organic field-effect transistors with ionic liquids[J]. Appl. Phys. Lett., 2008, 92(10): 103313. |
[69] | Ue M, Takeda M, Toriumi A, Kominato A, Hagiwara R, Ito Y. Application of low-viscosity ionic liquid to the electrolyte of double-layer capacitors[J]. J. Electrochem. Soc., 2003, 150(4): A499-A502. |
[70] | Khorsandi D, Zarepour A, Rezazadeh I, Ghomi M, Ghanbari R, Zarrabi A, Esfahani F T, Mojahed N, Baghayer M, Zare E N. Ionic liquid-based materials for electrochemical biosensing[J]. Clin. Transl. Disc., 2022, 2(3): e127. |
[71] | Sakaebe H, Matsumoto H. N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13-TFSI) - Novel electrolyte base for Li battery[J]. Electrochem. Commun., 2003, 5(7): 594-598. |
[72] | Schömer M, Rothgängel P, Mitländer K, Wisser D, Thommes M, Haumann M. Gas-phase hydroformylation using supported ionic liquid phase (SILP) catalysts - influence of support texture on effective kinetics[J]. ChemCatChem, 2021, 13(19): 4192-4200. |
[73] | Steinrück H P, Wasserscheid P. Ionic liquids in catalysis[J]. Catalysis Lett., 2015, 145(1): 380-397. |
[74] | Harada A, Yamaoka H, Ogata R, Watanabe K, Kinoshita K, Kishida S, Nokami T, Itoh T. Enhanced stability of the HfO2 electrolyte and reduced working voltage of a CB-RAM by an ionic liquid[J]. J. Mater. Chem. C, 2015, 3(27): 6966-6969. |
[75] | Widegren J A, Laesecke A, Magee J W. The effect of dissolved water on the viscosities of hydropheric room-temperature ionic liquids[J]. Chem. Commun., 2005, 12: 1610-1612. |
[76] | Taylor A W, Qiu F, Villar-Garcia I J, Licence P. Spectroelectrochemistry at ultrahigh vacuum: in-situ monitoring of electrochemically generated species by X-ray photoelectron spectroscopy[J]. Chem. Commun., 2009, 39: 5817-5819. |
[77] | Wibowo R, Aldous L, Jacobs R M J, Manan N S A, Compton R. G. Monitoring potassium metal electrodeposition from an ionic liquid using in-situ electrochemical-X-ray photoelectron spectroscopy[J]. Chem. Phys. Lett., 2011, 509(1-3): 72-76. |
[78] | Weingarth D, Foelske-Schmitz A, Wokaun A, Kötz R. In-situ electrochemical XPS study of the Pt/[EMIM][BF4] system[J]. Electrochem. Comm., 2011, 13(6): 619-622. |
[79] | Arimoto S, Oyamatsu D, Torimoto T, Kuwabata S. Development of in-situ electrochemical scanning electron microscopy with ionic liquids as electrolytes[J]. ChemPhysChem., 2008, 9(5): 763-767. |
[80] | Arimoto S, Kageyama H, Torimoto T, Kuwabata S. Development of in-situ scanning electron microscope system for real time observation of metal deposition from ionic liquid[J]. Electrochem. Comm., 2008, 10(12): 1901-1904. |
[81] | Watanabe K, Maruyama S, Matsumoto Y. p-Si(111):H/ionic liquid interface investigated through a combination of electrochemical measurements and reflection high energy[J]. Chem. Phys. Lett., 2016, 655: 6-10. |
[82] | Iwahori K, Watanabe S, Kawai M, Kobayashi K, Yamada H, Matsushige K. Effect of water adsorption on microscopic friction force on SrTiO3(001)[J]. J. Appl. Phys. 2003, 93(6): 3223-3227. |
[83] | Yamasaki T, Ueno K, Tsukazaki A, Fukumura T, Kawasaki M. Observation of anomalous Hall effect in EuO epitaxial thin films grown by a pulse laser deposition[J]. Appl. Phys. Lett., 2011, 98(8): 082116. |
[84] |
Mairoser T, Mundy J A, Melville A, Hodash D, Cueva P, Held R, Glavic A, Schubert J, Muller D A, Schlom D G, Schmehl A. High-quality EuO thin films the easy way via topotactic transformation[J]. Nat. Commun., 2015, 6: 7716.
doi: 10.1038/ncomms8716 pmid: 26177710 |
[85] | Takahashi C, Kanai M, Maruyama S, Matsumoto Y. Vacuum electrochemistry approach to investigate electrical double-layer capacitances of ionic liquid for epitaxial thin-film electrodes of TiO2 and SrO on niobium-doped (001)SrTiO3[J]. ChemElectroChem, 2020, 7(15): 3253-3259. |
[86] | Takahashi R, Matsumoto Y, Ohsawa T, Lippmaa M, Kawasaki M, Koinuma H. Growth dynamics of the epitaxial SrO film on SrTiO3(001)[J]. J. Cryst. Growth, 2002, 234(2-3): 505-508. |
[87] | Young K F, Frederikse H P R. Compilation of the static dielectric constant of inorganic solids[J]. J. Phys. Chem. Ref. Data, 1973, 2: 313-410. |
[88] | Sano Y, Kaminaga K, Maruyama S, Matsumoto Y. Ferromagnetic semiconductor EuO thin films characterized by vacuum electrochemical process with ionic liquid[J]. Mat. Sci. Semicon. Proc., 2024, 181: 108629. |
[89] |
Vattuone L, Boragno C, Pupo M, Restelli P, Rocca M, Valbusa U. Azimuthal dependence of sticking probability of O2 on Ag(110)[J]. Phys. Rev. Lett., 1994, 72(4): 510-513.
pmid: 10056451 |
[90] | Imai A, Katayama M, Maruyama S, Nishikawa H, Wada T, Kimura H, Fukuhara M, Takemoto T, Inoue A, Matsumoto Y. Improved wettability of Sn-based solder over the Cu60Zr30Ti10 bulk metallic glass surface[J]. J. Mater. Res., 2009, 24(9): 2931-2934. |
[91] | Matsumoto Y, Takata S, Tanaka R, Hachiya A. Electrochemical impedance analysis of electric field dependence of the permittivity of SrTiO3 and TiO2 single crystals[J]. J. Appl. Phys., 2011, 109(1): 014112. |
[92] | Matsumoto Y, Miura Y, Takata S. Thickness-dependent flat band potential of anatase TiO2(001) epitaxial films on Nb:SrTiO3(001) investigated by UHV-electrochemistry approach[J]. J. Phys. Chem. C, 2016, 120(3): 1472-1477. |
[93] | Axe J D. Infrared dielectric dispersion in divalent europium chalcogenides[J]. J. Phys. Chem. Solid., 1969, 30: 1403-1406. |
[94] | Guntherodt G. Optical properties and electronic structure of europium chalcogenides[J]. Phys. Condens. Matter, 1974, 18: 37-78. |
[95] | Vijh A K. Directions in electrochemical physics[J]. Mater. Chem. Phys., 1986, 14(2): 97-112. |
[96] |
Wang Z L, Song J H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J]. Science, 2006, 312(5771): 242-246.
pmid: 16614215 |
[97] | Ohtomo A, Kawasaki M, Koida T, Masubuchi K, Koinuma H, Sakurai Y, Yoshida Y, Yasuda T, Segawa Y. MgxZnO1-x as a II-VI widegap semiconductor alloy[J]. Appl. Phys. Lett., 1998, 72(19): 2466-2468. |
[98] | Kanai M, Watanabe K, Maruyama S, Matsumoto Y. Ionic liquid/ZnO(000-1) single crystal and epitaxial film interfaces studied through a combination of electrochemical measurements and a pulsed laser deposition process under vacuum[J]. Phys. Chem. Chem. Phys., 2019, 21: 25506-25512. |
[99] | Miura Y, Takata S, Matsumoto Y. Nondestructive and repeatable capacitance-voltage and current-voltage measurements across the oxide/electrolyte interface by UHV-electrochemistry approach[J]. Appl. Phys. Express, 2014, 7(9): 095802. |
[100] | Nozik A J, Memming R. Physical chemistry of semiconductor-liquid interfaces[J]. J. Phys. Chem., 1996, 100(31): 13061-13078. |
[101] | Beranek R. (Photo)electrochemical methods for the determination of the band edge positions of TiO2-based nanomaterials[J]. Adv. Phys. Chem., 2011: 786759. |
[102] | Nakamura R, Ohashi N, Imanishi A, Osawa T, Matsumoto Y, Koinuma H, Nakato N. Crystal-face dependences of surface band edges and hole reactivity, revealed by preparation of essentially atomically smooth and stable (110) and (100) n-TiO2 (rutile) surfaces[J]. J. Phys. Chem. B., 2005, 109(5): 1648-1651. |
[103] | Phillips J C. Ionicity of the chemical bond in crystals[J]. Rev. Mod. Phys., 1970, 42: 317-356. |
[104] | Ding L L, Wu L Q, Ge X S, Du Y N, Qian J J, Tang G D, Zhong W. Study of average valence and valence electron distribution of several oxides using X-ray photoelectron spectra[J]. Results in Physics, 2018, 9: 866-870. |
[105] |
Maruyama S, Prastiawan I B H, Toyabe K, Higuchi Y, Koganezawa T, Kubo M, Matsumoto Y. Ionic conductivity in ionic liquid nano thin films[J]. ACS Nano, 2018, 12(10): 10509-10517.
doi: 10.1021/acsnano.8b06386 pmid: 30199622 |
[106] | Maruyama S, Ishikawa Y, Mitsui T, Aoki K, Matsumoto Y. Surface thermal fluctuation spectroscopy study of ultra-thin ionic liquid films on quartz[J]. Appl. Phys. Express, 2021, 14(7): 075503. |
[107] |
Cho J H, Lee J, Xia Y, Kim B S, He Y, Renn M J, Lodge T P, Frisbie C D. Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic[J]. Nat. Mater., 2008, 7(11): 900-906.
doi: 10.1038/nmat2291 pmid: 18931674 |
[108] | Watanabe H, Takazawa R, Takahashi R, Maruyama S, Matsumoto Y. Nanogels constituted of polyurea filled with an ionic liquid as an electrolyte for electric double layer transistors[J]. ACS Appl. Nano Mater., 2020, 3(10): 9610-9615. |
[109] | Komatsu H, Tanaka M, Kaminaga K, Maruyama S, Matsumoto Y. Electric double layer action of high-quality ionic liquid crystal thin films[J]. Chem. Lett., 2022, 51(2): 162-165. |
[110] | Zhang W, Maruyama S, Kaminaga K, Matsumoto Y. Ionic liquid crystal film gated electric double layer transistors[J]. ACS Appl. Electron. Mater., DOI: 10.1021/acsaelm.5c00728. |
[111] | Zhang W, Komatsu H, Maruyama S, Kaminaga K, Matsumoto Y. Ionic liquid crystal thin film as switching layer in nonvolatile resistive memory[J]. ACS Appl. Mater. Interfaces, 2023, 15(45): 52806-52813. |
[112] | Zhang W, Maruyama S, Kaminaga K, Matsumoto Y. Near room temperature multilevel resistive switching memory with thin film ionic liquid crystal[J]. l. J. Mater. Chem. C, 2024, 12: 9321-9327. |
[1] | 刘晨希, 邹泽萍, 胡梅雪, 丁宇, 谷宇, 刘帅, 南文静, 马溢昌, 陈招斌, 詹东平, 张秋根, 庄林, 颜佳伟, 毛秉伟. 电极/碱性聚电解质界面的微分电容曲线和零电荷电位测定[J]. 电化学(中英文), 2024, 30(3): 2303151-. |
[2] | 孙圣男, 徐梽川. 乙二醇氧化在不同电位区间下的电极负载量的优化[J]. 电化学(中英文), 2022, 28(2): 2108411-. |
[3] | 张露露, 李琛坤, 黄俊. 平衡、非平衡、交流状态下电化学双电层建模的初学者指南[J]. 电化学(中英文), 2022, 28(2): 2108471-. |
[4] | 叶珍珍, 张抒婷, 陈鑫祺, 王瑾, 金鹰, 崔超婕, 张磊, 钱陆明, 张刚, 骞伟中. 基于离子液体的超级电容在3 V及65 oC老化条件下的铝碳界面效应[J]. 电化学(中英文), 2022, 28(12): 2219005-. |
[5] | 李丹丹, 纪翔宇, 陈明, 杨燕茹, 王晓东, 冯光. 低聚离子液体的体相与界面及其电化学储能应用[J]. 电化学(中英文), 2022, 28(11): 2219002-. |
[6] | 潘晓娜, 刘丽来, 王治璞, 王丹, 李云, 杨培霞, 张锦秋, 安茂忠. 离子液体凝胶聚合物电解质的三元组分相互作用研究[J]. 电化学(中英文), 2020, 26(3): 406-412. |
[7] | 黄俊. 电催化界面和反应的电化学阻抗谱研究:经典永不褪色[J]. 电化学(中英文), 2020, 26(1): 3-18. |
[8] | 方亚辉, 刘智攀. 固液界面双电层的理论计算模拟[J]. 电化学(中英文), 2020, 26(1): 32-40. |
[9] | 张韩方, 魏 风, 孙 健, 荆梦莹, 何孝军. 离子液体辅助条件下由稻壳合成超级电容器用多孔炭[J]. 电化学(中英文), 2019, 25(6): 764-772. |
[10] | M. Rostom Ali, S Sankar Saha, Md Ziaur Rahman. 共晶基离子液体的钴电化学沉积[J]. 电化学(中英文), 2018, 24(5): 546-554. |
[11] | 陈莉, 刘帅, 李棉刚, 苏建加, 颜佳伟, 毛秉伟. Au(111)/咪唑基离子液体界面结构研究:阳离子侧链长度的影响[J]. 电化学(中英文), 2018, 24(5): 511-516. |
[12] | 于金芝,连叶,张锦秋,杨培霞,安茂忠. 激光刻蚀模板中电沉积特殊结构CIGS薄膜[J]. 电化学(中英文), 2018, 24(1): 4-12. |
[13] | 张秋红,申保收,左宋林,卫歆雨. 离子液体电解质种类对活性炭电极超级电容器电化学性能的影响[J]. 电化学(中英文), 2017, 23(6): 684-693. |
[14] | 林鑫,孙草草,刘峙嵘,曾程初. 离子液体负载的TEMPO/离子液体聚合物/碳黑三元复合材料在醇的电化学氧化中的应用[J]. 电化学(中英文), 2017, 23(3): 322-326. |
[15] | 程琥, 聂晓燕, 申叶丹, . 哌啶型离子液体混合电解液在Li/LiCoO2电池中的性能研究[J]. 电化学(中英文), 2017, 23(1): 59-63. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||