[1] |
Markovich I, Mandler D. Preparation and characterization of octadecylsilane monolayers on indium-tin oxide (ITO) surfaces[J]. J. Electroanal. Chem., 2001, 500(1-2): 453-460.
|
[2] |
Sagiv J. Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces[J]. J. Am. Chem. Soc., 1980, 102(1): 92-98.
|
[3] |
Untereker D F, Lennox J C, Wier L M, Moses P R, Murray R W. Chemically modified electrodes: Part IV. Evidence for formation of monolayers of bonded organosilane reagents[J]. J. Electroanal. Chem., 1977, 81(2): 309-318.
|
[4] |
Borges-Muñoz A C, Miller D P, Zurek E, Colón L A. Silanization of superficially porous silica particles with p-aminophenyltrimethoxysilane[J]. Microchem. J., 2019, 147: 263-268.
doi: 10.1016/j.microc.2019.02.013
|
[5] |
Ebner A, Hinterdorfer P, Gruber H J. Comparison of different aminofunctionalization strategies for attachment of single antibodies to AFM cantilevers[J]. Ultramicroscopy, 2007, 107(10-11): 922-927.
pmid: 17560033
|
[6] |
Pour F A, Zandi H. DFT electron transport study of quantum dot sensitized solar cells linkers[J]. Optik, 2017, 143: 199-204.
|
[7] |
Clegg R S, Hutchison J E. Hydrogen-bonding, self-sssembling monolayers: Ordered molecular films for study of through-peptide electron transfer[J]. Langmuir, 1996, 12(22): 5239-5243.
|
[8] |
Clegg R S, Hutchison J E. Control of monolayer assembly atructure by hydrogen bonding rather than by adsorbate-substrate templating[J]. J. Am. Chem. Soc., 1999, 121(22): 5319-5327.
|
[9] |
Valiokas R, Östblom M, Svedhem S, Svensson S C T, Liedberg B J. Thermal stability of self-assembled monolayers: Influence of lateral hydrogen bonding[J]. Phys. Chem. B, 2002, 106(40): 10401-10409.
|
[10] |
Sek S, Misicka A, Bilewicz R. Effect of interchain hydrogen bonding on electron transfer through alkanethiol monolayers containing amide bonds[J]. J. Phys. Chem., 2000, 104(22): 5399-5402.
|
[11] |
Ikeda T, Tahara K, Kadoya T, Tajima H, Toyoda N, Yasuno S, Ozawa Y, Abe M. Ferrocene on insulator: Silane coupling to a SiO2 surface and influence on electrical transport at a buried interface with an organic semiconductor layer[J]. Langmuir, 2020, 36(21): 5809-5819.
|
[12] |
Wang B, Tahara H, Sagara T. Driving quick and large amplitude contraction of viologen-incorporated poly-L-lysine-based hydrogel by reduction[J]. ACS Appl. Mater. Interfaces, 2018, 10(42), 36415-36424.
|
[13] |
Katz E, Itzhak N, Willner I. Electron transfer in self-assembled monolayers of N-methyl-N’-carboxyalkyl-4,4’-bipyridinium linked to gold electrode[J]. Langmuir, 1993, 9(5): 1392-1396.
|
[14] |
Kurniawan C, Noguchi H, Masuda T, Uosaki K. Spectroelectrochemical evidence of the role of viologen moiety as an electron transfer mediator from ITO substrate to a Pt complex acting as a confined molecular catalyst for hydrogen evolution reaction[J]. Electrochem. Commun., 2016, 62: 56-59.
|
[15] |
Gardner T J, Daniel Frisbie C, Wrighton M S. Systems for orthogonal self-assembly of electroactive monolayers on Au and ITO: An approach to molecular Electronics[J]. J. Am. Chem. Soc., 1995, 117(26): 6927-6933.
|
[16] |
Chen X, Luais E, Darwish N, Ciampi S, Thordarson P, Gooding J J. Studies on the effect of solvents on self-assembled monolayers formed from organophosphonic acids on indium tin oxide[J]. Langmuir, 2012, 28(25): 9487-9495.
doi: 10.1021/la3010129
pmid: 22621243
|
[17] |
Kemal Havarea A, Can M, Demic S, Okur S, Kus M, Aydın H, Yagmurcukardes N, Tari S. Modification of ITO surface using aromatic small molecules with carboxylic acid groups for OLED applications[J]. Synth. Met., 2011, 161(21-22): 2397-2404.
|
[18] |
Aydın E B, Aydın M, Sezgintürk M K. A highly sensitive immunosensor based on ITO thin films covered by a new semi-conductive conjugated polymer for the determination of TNFα in human saliva and serum samples[J]. Biosens. Bioelectron, 2017, 97:169-176.
doi: S0956-5663(17)30374-3
pmid: 28599176
|
[19] |
Wang W L, Zhai J, Jiang L, Bai F L, Ren Y J, Zhang B, Cai S M. Novel photoactive self-assembled rigid monolayer of a perylene derivative: fabrication and characterization[J]. Colloids Surf., A, 2005, 257-258: 489-495.
|
[20] |
Guo Y, Zhao J W, Zhu J J. Study on the intermolecular interactions between the functional moieties in ferrocene-terminated alkanethiol self-assembled monolayer on gold[J]. Thin Solid Films, 2008, 516(10): 3051-3057.
|
[21] |
Nerngchamnong N, Thompson D, Cao L, Yuan L, Jiang L, Roemer M, Nijhuis C A. Nonideal Electrochemical behavior of ferrocenyl-alkanethiolate SAMs maps the microenvironment of the redox unit[J]. J. Phys. Chem. C, 2015, 119(38): 21978-21991.
|
[22] |
Huffman B L, Bredar A R C, Dempsey J L. Origins of non-ideal behaviour in voltammetric analysis of redox-active monolayers[J]. Nat. Rev. Chem. 2024, 8, 628-643.
|
[23] |
Zotti G, Schiavon S, Zecchin S, Berlin A, Pagani G. Adsorption of ferrocene compounds on Indium-Tin-Oxide electrodes. Enhancement of adsorption by decomposition of ferrocenium molecules by oxygen[J]. Langmuir, 1998, 14(7):1728-1733.
|
[24] |
Sagara T, Kato N, Toyota A, Nakashima N. Anomalous electroreflectance and absorption spectra of viologen radical cation in close proximity of gold nanoparticles at electrified interfaces[J]. Langmuir, 2002, 18(18): 6995-7001.
|
[25] |
Toyota A, Nakashima N, Sagara T. UV-visible transmission-absorption spectral study of Au nanoparticles on a modified ITO electrode at constant potentials and under potential modulation[J]. J. Electroanal. Chem., 2004, 565(2): 335-342.
|
[26] |
Komino T, Tajima H, Matsuda M. A relationship between molecular orientation and current-voltage characteristics in poly(3-hexylthiophene) thin film[J]. Chem. Lett., 2008, 37(7): 690-691.
|
[27] |
Sagara T. UV-visible reflectance spectroscopy of thin organic films at electrode surfaces[M]// Advances in Electrochemical Science and Engineering Vol. 9 (Alkire, C, Kolb, D M, Lipkowski, J, Ross, P. N. Eds), Weinheim: Wiley-VCH Verlag, 2006: 47-95.
|
[28] |
Sagara T, Kubo Y, Hiraishi K. Estimation of the orientation of heme in cytochrome c immobilized on a carboxylate-terminated alkanethiol monolayer on a Au electrode by the use of electroreflectance spectroscopy with polarized light incidence[J]. J. Phys. Chem. B, 2006, 110(33): 16550-16558.
|
[29] |
Sagara T, Hagi Y, Toyohara M. Binding of sulfate-terminated surfactants with different alkyl chain lengths to viologen sites covalently embedded in the interior of a self-assembled monolayer on a Au electrode[J]. Langmuir, 2022, 38(3): 979-986.
doi: 10.1021/acs.langmuir.1c02376
pmid: 35029392
|
[30] |
Monk P M S. The viologens[M]. Chichester: John-Wiley & Sons, 1998.
|
[31] |
Sagara T, Eguchi H. Revisiting aqueous redox process of alkyl-linked bis-viologen: Evaluation of redox potential inversion[J]. Electrochim. Acta 2019, 295: 215-223.
|
[32] |
Patterson B C, Hurst J K. Pathways of viologen-mediated oxidation-reduction reactions across dihexadecyl phosphate bilayer membranes[J]. J. Phys. Chem., 1993, 97(2): 454-465.
|
[33] |
Sagara T, Maeda H, Yuan Y, Nakashima N. Voltammetric and electroreflectance study of thiol-functionalized viologen monolayers on polycrystalline gold: Effect of anion binding to a viologen moiety[J]. Langmuir, 1999, 15(11): 3823-3830.
|
[34] |
Sagara T, Kaba N, Komatsu M, Uchida M, Nakashima N. Estimation of average orientation of surface-confined chromophores on electrode surfaces using electroreflectance spectroscopy[J]. Electrochim. Acta, 1998, 43: 2183-2193.
|
[35] |
Laviron E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems[J]. J. Electroanal. Chem. Interfacial Electrochem., 1979, 101(1): 19-28.
|
[36] |
Wang H, Chen S F, Li L G, Jiang S Y. Improved method for the preparation of carboxylic acid and amine terminated self-assembled monolayers of alkanethiolates[J]. Langmuir, 2005, 20(7): 2633-2636.
|